scholarly journals Effect of Bio-Oil Species on Rheological Behaviors and Gasification Characteristics of Coal Bio-Oil Slurry Fuels

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1045
Author(s):  
Ping Feng ◽  
Jie Li ◽  
Jinyu Wang ◽  
Huan Wang ◽  
Zhiqiang Xu

Bio-oil is a promising fuel as one of the main products from biomass fast pyrolysis for improving energy density and reducing transportation cost, but high acidity and low calorific value limit its direct application. It can be used to prepare coal bio-oil slurry as partial green fuels for potential feeds for synthesis gas production via gasification with the advantages over traditional coal-water slurries of calorific values and being additives-free. In the present work, three bio-oils were blended with lignite to prepare slurry fuels for the investigation of the effect of bio-oil species on rheological behaviors and gasification characteristics of coal bio-oil slurry fuels. Results show that slurry prepared with bio-oil from fruit tree pyrolysis is highly viscous and has higher activation energy in gasification. Slurries prepared with bio-oils from straw pyrolysis and pyroligneous acid from wood pyrolysis exhibited an acceptably lower viscosity, and the gasification temperatures were lower than for coal. The activation energy decreased by 15.98 KJ/mol and 2.77 KJ/mol, respectively, which indicates these bio-oils are more suitable with lignite for slurries preparation.

BioResources ◽  
2014 ◽  
Vol 10 (1) ◽  
Author(s):  
Yi Liu ◽  
Jianmin Gao ◽  
Hongwu Guo ◽  
Yuanfeng Pan ◽  
Chengfeng Zhou ◽  
...  

2013 ◽  
Vol 873 ◽  
pp. 562-566 ◽  
Author(s):  
Juan Liu ◽  
Xia Li ◽  
Qing Jie Guo

Chlorella samples were pyrolysed in a fixed bed reactor with γ-Al2O3 or ZSM-5 molecular sieve catalyst at 600°C. Liquid oil samples was collected from pyrolysis experiments in a condenser and characterized for water content, kinematic viscosity and heating value. In the presence of catalysts , gas yield decreased and liquid yield increased when compared with non-catalytic pyrolysis at the same temperatures. Moreover, pyrolysis oil from catalytic with γ-Al2O3 runs carries lower water content and lower viscosity and higher heating value. Comparison of two catalytic products, the results were showed that γ-Al2O3 has a higher activity than that of ZSM-5 molecular sieve. The acidity distribution in these samples has been measured by t.p.d, of ammonia, the γ-Al2O3 shows a lower acidity. The γ-Al2O3 catalyst shows promise for production of high-quality bio-oil from algae via the catalytic pyrolysis.


2019 ◽  
Vol 3 (7) ◽  
pp. 1600-1622 ◽  
Author(s):  
Ji-Lu Zheng ◽  
Ya-Hong Zhu ◽  
Ming-Qiang Zhu ◽  
Kang Kang ◽  
Run-Cang Sun

The commercial production of advanced fuels based on bio-oil gasification could be promising because the cost-effective transport of bio-oil could promote large-scale implementation of this biomass technology.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3474 ◽  
Author(s):  
Yichen Liu ◽  
James J. Leahy ◽  
Jacek Grams ◽  
Witold Kwapinski

Fast pyrolysis of Miscanthus, its hydrolysis residue and lignin were carried with a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) followed by online vapor catalytic upgrading with sulfated ZrO2, sulfated TiO2 and sulfated 60 wt.% ZrO2-TiO2. The most evident influence of the catalyst on the vapor phase composition was observed for aromatic hydrocarbons, light phenols and heavy phenols. A larger amount of light phenols was detected, especially when 60 wt.% ZrO2-TiO2 was present. Thus, a lower average molecular weight and lower viscosity of bio-oil could be obtained with this catalyst. Pyrolysis was also performed at different pressures of hydrogen. The pressure of H2 has a great effect on the overall yield and the composition of biomass vapors. The peak area percentages of both aromatic hydrocarbons and cyclo-alkanes are enhanced with the increasing of H2 pressure. The overall yields are higher with the addition of either H2 or sulfated catalysts. This is beneficial as phenols are valuable chemicals, thus, increasing the value of bio-oil. The results show that the hydrolysis residue has the potential to become a resource for phenol production.


2017 ◽  
Vol 898 ◽  
pp. 2187-2196 ◽  
Author(s):  
Feng Mei Li ◽  
Ying Ying Zheng ◽  
Biao Wang

The rheological behaviors of polyacrylonitrile (PAN) in NaSCN aqueous solutions containing different amount of Graphene oxide (GO) were investigated through both steady-state and dynamic rheological measurements. The parameters such as apparent viscosity (ηα), flow activation energy (Eη), structural viscosity index (Δη), storage modulus (G’), loss modulus (G’’) and mechanical loss factor (tanδ) were measured to illustrate the rheological behaviors of these solutions. The results showed that the apparent viscosity decreased with adding appropriate amount of GO, while the structural viscosity index, the flow activation energy and the mechanical loss factor of GO/PAN spinning solutions increased. Accordingly, a possible mechanism of GO effect on rheological behaviors of PAN solution was proposed in this work.


2015 ◽  
Vol 776 ◽  
pp. 300-306
Author(s):  
I. Nyoman Suprapta Winaya ◽  
Rukmi Sari Hartati ◽  
I. Putu Lokantara ◽  
I. Gan Subawa ◽  
I. Made Agus Putrawan

The solid waste produced from urban area is an urgent issue to be addressed. A fluidized bed (FB) gasification technology has been widely applied and proven effective to convert waste into clean energy and environmentally friendly. Co-gasification is a technique of mixing two or more fuels that aims to improve calorific value of the gas production. A FB gasifier reactor is designed using some previous experiments and available literature as well as from the internal experience of the research group. The gasification reactor pilot plant scale using data input of waste and biomass fuels has been fabricated with diameter of 0.7 m and a height of 1.5 m. The Tests have been performed showing that the FB gasifier is very feasible to be developed.


2020 ◽  
Vol 12 (8) ◽  
pp. 3441 ◽  
Author(s):  
Saba Seyedi ◽  
Kaushik Venkiteshwaran ◽  
Nicholas Benn ◽  
Daniel Zitomer

Pyrolysis can convert wastewater solids into useful byproducts such as pyrolysis gas (py-gas), bio-oil and biochar. However, pyrolysis also yields organic-rich aqueous pyrolysis liquid (APL), which presently has no beneficial use. Autocatalytic pyrolysis can beneficially increase py-gas production and eliminate bio-oil; however, APL is still generated. This study aimed to utilize APLs derived from conventional and autocatalytic wastewater solids pyrolysis as co-digestates to produce biomethane. Results showed that digester performance was not reduced when conventional APL was co-digested. Despite having a lower phenolics concentration, catalyzed APL inhibited methane production more than conventional APL and microbial community analysis revealed a concomitant reduction in acetoclastic Methanosaeta. Long-term (over 500-day) co-digestion of conventional APL with synthetic primary sludge was performed at different APL organic loading rates (OLRs). Acclimation resulted in a doubling of biomass tolerance to APL toxicity. However, at OLRs higher than 0.10 gCOD/Lr-d (COD = chemical oxygen demand, Lr = liter of reactor), methane production was inhibited. In conclusion, conventional APL COD was stoichiometrically converted to methane in quasi steady state, semi-continuous fed co-digesters at OLR ≤ 0.10 gCOD/Lr-d. Undetected organic compounds in the catalyzed APL ostensibly inhibited anaerobic digestion. Strategies such as use of specific acclimated inoculum, addition of biochar to the digester and pretreatment to remove toxicants may improve future APL digestion efforts.


Sign in / Sign up

Export Citation Format

Share Document