scholarly journals Environmental and Energetic Evaluation of Refuse-Derived Fuel Gasification for Electricity Generation

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2255
Author(s):  
Taís Eliane Marques ◽  
York Castillo Santiago ◽  
Maria Luiza Grillo Renó ◽  
Diego Mauricio Yepes Maya ◽  
Leandro Alcoforado Sphaier ◽  
...  

In this work, an energetic and environmental evaluation of the electricity generation process through refuse-derived fuel (RDF) gasification coupled to a gas microturbine (GM) was performed. Two scenarios are considered with different gasification agents in RDF gasification modeling: air and air enriched with oxygen. A thermodynamic chemical equilibrium approach was used to analyze the gasification parameters. The results of RDF gasification indicate a maximum value of syngas low heating value (LHV) equal to 8.0 MJ/Nm3, obtained for an equivalence ratio of 0.3. The use of these syngas in the gas microturbine produces 79.6 kW of electrical power. For the environmental evaluation of gasification and electricity generation systems, the Life Cycle Assessment methodology was employed. The calculated environmental impacts indicate that the emission of contaminants from fossil fuel combustion (in the stage of transport by heavy load vehicles) and that the electricity consumption for equipment operation (in the stage of municipal solid waste pretreatment) contributes to environmental pollution. On the other hand, electricity generation through GM presented lower environmental impact for all analyzed categories, suggesting that the electricity generation from gas obtained from gasification could be a viable option for thermochemical conversion of RDF and its subsequent energetic use.

2014 ◽  
Vol 25 (3) ◽  
pp. 46-60 ◽  
Author(s):  
Fei Qin ◽  
Rajah Rasiah ◽  
JiaShen Leow

This study uses annual data from 1974 to 2011 to examine the long-run and short-run relationships between fossil fuel powered electricity consumption, economic growth, energy prices and technological innovation for four net energy exporting countries. Canada, Ecuador, Norway and South Africa are chosen as the main research background in order to investigate how the development degree and economic dependence on energy exports affect the electricity-growth nexus. Based on the results drawing from the ARDL approach and the Granger causality test, economic growth positively influences the variation in fossil fuel powered electricity consumption in both the short-run and long-run for all four countries. The reverse causality from electricity consumption to economic growth is only evident in Ecuador and Norway. The degree of dependence on energy exports is a contributory factor of explaining the causality puzzle of the electricity-growth nexus. Given the fact that technological innovation does not benefit fossil fuel powered electricity generation, this paper suggests these net energy exporting countries to replace fossil fuel with more sustainable and effective sources in the electricity generation process.


2014 ◽  
Vol 539 ◽  
pp. 669-673
Author(s):  
Xie Hong

This paper analyzes the actual situation of the electricity management about student apartments, and design intelligent energy student housing management system based on CAN bus. The system uses the field level, the underlying management level and upper management level three management systems. Field level with a dedicated energy metering chip AD7755 and STM32F103 microcontroller with A/D conversion function as the core, to achieve real-time power measurement; via CAN bus timing or random read live energy data for monitoring electricity consumption of the apartment, investigate abnormal electricity, thus effectively limiting the students to use electrical power to achieve the modernization and automation of power management solutions student apartments.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3088
Author(s):  
Henry Wasajja ◽  
Saqr A. A. Al-Muraisy ◽  
Antonella L. Piaggio ◽  
Pamela Ceron-Chafla ◽  
Purushothaman Vellayani Aravind ◽  
...  

Small-scale electrical power generation (<100 kW) from biogas plants to provide off-grid electricity is of growing interest. Currently, gas engines are used to meet this demand. Alternatively, more efficient small-scale solid oxide fuel cells (SOFCs) can be used to enhance electricity generation from small-scale biogas plants. Most electricity generators require a constant gas supply and high gas quality in terms of absence of impurities like H2S. Therefore, to efficiently use the biogas from existing decentralized anaerobic digesters for electricity production, higher quality and stable biogas flow must be guaranteed. The installation of a biogas upgrading and buffer system could be considered; however, the cost implication could be high at a small scale as compared to locally available alternatives such as co-digestion and improved digester operation. Therefore, this study initially describes relevant literature related to feedstock pre-treatment, co-digestion and user operational practices of small-scale digesters, which theoretically could lead to major improvements of anaerobic digestion process efficiency. The theoretical preamble is then coupled to the results of a field study, which demonstrated that many locally available resources and user practices constitute frugal innovations with potential to improve biogas quality and digester performance in off-grid settings.


To make micro grid with renewable energy and to over come the technical challenges and economy base and policy and regulatory challenges . From the natural wastage we can generate the Electricity. Thus, the Electrical Power or Electricity is available with a low cost and pollution free to anyplace in the world at all times. This process divulge a unequaled step in electricity generation and this type of generation is maintain the ecological balance. We can have an uninterrupted power supply irrespective of the natural condition without any kind of environmental pollution. More influence this process relent the less production cost for electricity generation. Micro grids have long been used in remote areas to power off-grid villages, military operations or industrial projects. But increasingly they are being used in cities or towns, in urban centers. Here we try a proto type of micro grid with renewable energy sources.


2020 ◽  
Vol 31 (4) ◽  
pp. 26-42
Author(s):  
Gordon Rae ◽  
Gareth Erfort

In the context of the Anthropocene, the decoupling of carbon emissions from electricity generation is critical. South Africa has an ageing coal power fleet, which will gradually be decommissioned over the next 30 years. This creates substantial opportunity for a just transition towards a future energy mix with a high renewable energy penetration. Offshore wind technology is a clean electricity generation alternative that presents great power security and decarbonisation opportunity for South Africa. This study estimated the offshore wind energy resource available within South Africa’s exclusive economic zone (EEZ), using a geographic information system methodology. The available resource was estimated under four developmental scenarios. This study revealed that South Africa has an annual offshore wind energy production potential of 44.52 TWh at ocean depths of less than 50 m (Scenario 1) and 2 387.08 TWh at depths less than 1 000 m (Scenario 2). Furthermore, a GIS-based multi-criteria evaluation was conducted to determine the most suitable locations for offshore wind farm development within the South African EEZ. The following suitable offshore wind development regions were identified: Richards Bay, KwaDukuza, Durban, and Struis Bay. Based on South Africa’s annual electricity consumption of 297.8 TWh in 2018, OWE could theoretically supply approximately 15% and 800% of South Africa’s annual electricity demand with offshore wind development Scenario 1 and 2 respectively.


2020 ◽  
Vol 3 (2) ◽  
pp. 18-26
Author(s):  
Suryani Goga ◽  
Lillyani M. Orisu ◽  
Marcus R. Maspaitella

Purpose of this study was to analyze the effect of the number of electronic furniture, the number of lamps, the number of family dependents, income and electrical power on the electricity demand by households in Amban Village, Manokwari Regency. The data obtained comes from the results of interviews and literature review that supports this research. The analytical tool used in this research is multiple linear regression. The results showed that the number of electrical furniture, the number of lamps and the number of dependents did not affect household electricity consumption, while income and electrical power did not affect household electricity consumption demand.


2017 ◽  
Vol 2017 ◽  
pp. 1-22 ◽  
Author(s):  
Jihyun Kim ◽  
Thi-Thu-Huong Le ◽  
Howon Kim

Monitoring electricity consumption in the home is an important way to help reduce energy usage. Nonintrusive Load Monitoring (NILM) is existing technique which helps us monitor electricity consumption effectively and costly. NILM is a promising approach to obtain estimates of the electrical power consumption of individual appliances from aggregate measurements of voltage and/or current in the distribution system. Among the previous studies, Hidden Markov Model (HMM) based models have been studied very much. However, increasing appliances, multistate of appliances, and similar power consumption of appliances are three big issues in NILM recently. In this paper, we address these problems through providing our contributions as follows. First, we proposed state-of-the-art energy disaggregation based on Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) model and additional advanced deep learning. Second, we proposed a novel signature to improve classification performance of the proposed model in multistate appliance case. We applied the proposed model on two datasets such as UK-DALE and REDD. Via our experimental results, we have confirmed that our model outperforms the advanced model. Thus, we show that our combination between advanced deep learning and novel signature can be a robust solution to overcome NILM’s issues and improve the performance of load identification.


2020 ◽  
Vol 9 (2) ◽  
pp. 125-134
Author(s):  
Kurnia Paranita Kartika ◽  
Riska Dhenabayu

This study aims to design a Solar Home System with an Arduino-based Smart Switching system so that the use of electrical energy generated by solar panels can be adjusted without adding power from other electricity sources, such as PLN. Calculation of Leveled Cost of Energy (LCOE) is used as the basis for the switching process that will be carried out to regulate the use of household appliances that are routinely used, regulate electricity consumption automatically, minimize usage, and calculate the effectiveness of electric power usage. The way SHS works is to collect electrical energy from sunlight, then convert DC voltage to AC so that it can be used to run household electronic equipment. To accommodate the adequacy of electrical power, an automatic adjustment is made for household appliances that are routinely used, namely house lights, which includes setting the lights on and off and the number of lights that can be activated. The advantage of this research is that the SHS system is integrated with the automatic setting of the lights installed in the house so that the number of lights on will adjust the availability of electrical energy in the battery. In addition, with the LCOE method, the level of usage can be calculated so that users can save electricity. From the results of usage testing, it is found that the application of this switching technology provides benefits for users because it is no longer dependent on PLN supply. From an economic point of view, based on the calculation of Leveled Cost of Energy (LCOE), there is a kWh value savings of Rp. 77, - for each kWh price or about 4.53% compared to purchasing electricity with prepaid mode.


2020 ◽  
Vol 4 (3) ◽  
pp. 54
Author(s):  
Oseweuba Valentine Okoro ◽  
Adjoa Nkrumah Banson ◽  
Hongxia Zhang

The global crisis arising from the current COVID-19 pandemic has resulted in a surge in the magnitude of global waste from used Personal Protective Equipment with special emphasis on waste N95 facemask. Creative approaches are therefore required to resolve the surging facemask waste disposal issue in an economical and environmentally friendly manner. In an attempt to resolve the evolving global waste challenge, the present study has assessed the economic and environmental performances of converting N95 facemasks to steam and electricity via a combined heat and power plant, to ethanol via a syngas fermentation process, and to an energy-dense gasoline-like oil product via a hydrothermal liquefaction process. These processes were assessed using “conceptual” process models developed using ASPEN plus as the process simulation tool. Economic and environment assessments were undertaken using net present values (NPVs) and the rate of potential environmental impacts (PEIs) respectively, as sufficient performance measures. Therefore, the present study was able to establish that the conversion of waste N95 facemask to syngas prior to a fermentation process for ethanol production constituted the least economical and least environmental friendly process with a negative NPV and the highest rate of PEI (1.59 PEI/h) value calculated. The NPV values calculated for N95 facemask waste conversion to steam and electricity and energy-dense oil processes were US$ 36.6 × 106 and US$ 53 × 106 respectively, suggesting the preference for the production of a valuable energy-dense oil product. Furthermore, it was observed that when the environmental performance of both processes was considered, rates of PEIs of 1.20 and 0.28 PEI/h were estimated for the energy-dense oil production process and the steam and electricity generation process, respectively. Therefore, the study was able to establish that the utilisation of waste N95 facemask for steam and electricity generation and for generating an energy-dense oil product are both promising approaches that could aid in the resolution of the waste issue if both environmental and economic performances constitute crucial considerations.


Author(s):  
Samit J. Pethe ◽  
Michael L. Britt ◽  
Scott A. Morrison

Wheelabrator Technologies Inc. (WTI) operates a waste-to-energy facility in Portsmouth, Virginia. At full capacity, a total of 2,000 tons/day of refuse derived fuel (RDF) can be fired in four identical boilers to generate a total of 600,000 lb/hr of steam and 60 MW of electricity. The boilers were originally designed to co-fire RDF and coal; however, coal burning capability was removed a few years after commissioning. The plant provides all of the process/heating steam and the majority of the electrical power to the nearby Norfolk Naval Shipyard. Historically, the boilers had not been able to reliably achieve carbon monoxide (CO) emissions compliance. CO emissions experienced during normal boiler operation would be more than twice the mandated emission limit. WTI’s goal was to improve the boilers’ CO emissions performance while achieving sustained boiler operation at higher steam generation and RDF firing rates. WTI contracted Jansen Combustion and Boiler Technologies, Inc. (JANSEN) to evaluate the operation of the boilers, to assess the overall feasibility of meeting WTI’s goals, and to develop design concepts to overcome boiler limitations. The project was initiated by an engineering site visit where boiler operating data was collected and evaluated to develop a baseline of boiler operation. Current and new combustion system arrangements were evaluated with Computational Fluid Dynamics (CFD) modeling. The results confirmed that the root cause of the poor CO emissions performance was the inadequate penetration and mixing of the original overfire air (OFA) system (comprised of multiple rows of small ports on the front and rear furnace walls). CFD modeling also showed increased CO emissions to result from non-uniform RDF delivery profiles generated by the original fuel distributors that were installed at a high elevation over the grate. Modeling of the furnace with larger and fewer OFA nozzles placed on the side walls in an interlaced pattern, and the installation of “new-style” RDF distributors at a lower elevation where the boiler’s original coal distributors formerly were located was shown to significantly improve CO burnout. From December 2010 to May 2011, the new combustion systems were installed on all four boilers. Subsequent testing has shown that CO levels have been lowered by more than 70% and boiler availability has been significantly improved. Nitrogen oxides (NOx) emissions, although slightly higher following the upgrade, are still within the NOx compliance limit. This paper describes the process that led to a successful project, including: data collection and analyses, CFD modeling, equipment design and supply, operator training, and start-up assistance.


Sign in / Sign up

Export Citation Format

Share Document