scholarly journals New Combined Solution to Harness Wave Energy—Full Renewable Potential for Sustainable Electricity and Fresh Water Production

Proceedings ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 10
Author(s):  
Michael Henriksen ◽  
Simon Davide Luigi Piccioni ◽  
Massimo Lai

This paper is a first general dissemination of the H2020 Project Wave to Energy and Water (W2EW) started in January 2019. The joint vision of the W2EW consortium (Wavepiston, Ener.Med, Fiellberg, Vryhof) is to deliver a world-beating wave powered technology solution for electricity production and desalination. It relies on the innovative integration of wave energy and sea water desalination technologies, to produce zero-emission electricity and fresh water, with dynamic optimization of energy production and maximizing the available wave energy using fresh water as storage. The W2EW solution enables competitive cost of electricity and water. The present project is critical to demonstrate the W2EW solution in a real-life environment, to reduce the risk profile of the solution and to build the market to pave the way for broad market roll-out. The scope of the paper is to introduce the project W2EW and its expected results to a broader audience.

2014 ◽  
Vol 488-489 ◽  
pp. 970-974
Author(s):  
Gang Wang ◽  
Jian Zhong Shi

the large-scale application of non-grid-connected wind power in sea water desalination industry has not only solved the difficulty in grid connection of wind power, but also can be an inexhaustible clean energy supply for the sea water desalination. Such application, breaking through the traditional sea water desalination technology and wind power development ideas and realizing the 100% local use of renewable energies, is a perfect combination of the new energy industry and the power consumption industry. The large-scale industrialization application of non-grid-connected wind power sea water desalination can not only maximize the efficiency of wind power and realize the unification of social benefit, environmental benefit and economic benefit, but also is of great strategic significance in accelerating the transformation of the economic development mode of China, and meanwhile, plays a leading role in the diversified development of the world wind power industry. 1. High-energy consumption factors restrict the development of sea water desalination Sea water desalination is a source-opening incremental technology for realizing the utilization of water resources, which can increase the total amount of fresh water and is not limited by time, space and climate with good water quality, and can guarantee the stable water supply of drinking water for coastal residents and industrial water supplementation. Since sea water desalination is the substitutional and incremental technology of fresh water resources, many countries are attaching more and more importance on it. With the rapid development of the economy and society of China, especially with the acceleration of urbanization, some coastal developed areas and large cities near the sea are having a greater and greater demand on water resources. In this condition, the development of sea water desalination has a great strategic significance in the supplementation of water resources in the sustainable development process of these areas[1,2].


2016 ◽  
Vol 5 (6) ◽  
pp. 48-52
Author(s):  
Кострица ◽  
V. Kostritsa ◽  
Камруков ◽  
A. Kamrukov ◽  
Багров ◽  
...  

The innovative project of application of wind driven generators in units for sea and brackish waters desalination by reversed osmosis method with thermal utilization of salt concentrates and pulse ultra-violet disinfecting has been presented. This project implementation will provide with fresh water residential and industrial facilities, as well as farms in the areas located near the sea coast or having sources of underground brackish waters. This unit development aimed to obtaining fresh water with minimum expense of the salt concentrate in the form of sewage, and in some cases with its complete exception. The technical characteristic of autonomous unit for sea water desalination with performance on desalinated water equal to 50 m3 per day has been presented. Distinctive feature of the autonomous desalination unit is development of a module for pulse ultra-violet disinfecting of water by impact on it with high-intensity pulse ultra-violet wide range radiation and construction of an energy storage device based on a super condensers block which allowed the autonomous wind driven generator to use the energy concluded in wind fluctuations.


Author(s):  
Yoon-Suk Chang ◽  
Hyuk-Soo Chang ◽  
Sang-Min Lee ◽  
Jae-Boong Choi ◽  
Young-Jin Kim ◽  
...  

A system-integrated modular advanced reactor is being developed for multi purposes such as electricity production, sea water desalination and so on in Korea. While ASME Codes provide simplified design and operation procedures to determine allowable loadings for pressure retaining materials in components, the procedures are applicable when a temperature change rate associated with startup and shutdown is less than about 56°C/hr. If the procedures are applied to a rapid temperature change, results would be overly conservative. The objective of this research is to assess an applicability of the simplified design procedures to reactor coolant system of the integrated modular reactor with the change rates of 56°C/hr and 100°C/hr. To investigate effects of cooldown rate, heatup rate and surface crack location, systematic three-dimensional finite element analyses are carried out. The resulting pressure-temperature limit curves are compared with those obtained from the ASME Sec. XI operating procedure as well as Sec. III design procedure. Thereby, it was proven that the specific design features significantly affect the safe design region in the pressure-temperature limit curve to prevent a nonductile failure.


1976 ◽  
Vol 190 (1) ◽  
pp. 665-669
Author(s):  
M. G. Morsy

Despite the fact that the world's need for fresh water is becoming more urgent, the ability to desalinate economically on a large scale still remains a goal rather than a reality. Distillation systems are by far the most widely employed systems for sea water desalination. However, the relatively high costs of these systems' products limits their competence with natural water resources, particularly for agricultural use. In this paper a distillation system is proposed. The system gives high performance ratios at low flashing ranges, which leads to a substantial saving in the distillation plants running costs. The analyses showed that the system has big thermodynamic potentialities.


Author(s):  
Olga Mashukova ◽  
Olga Mashukova ◽  
Yuriy Tokarev ◽  
Yuriy Tokarev ◽  
Nadejda Kopytina ◽  
...  

We studied for the first time luminescence characteristics of the some micromycetes, isolated from the bottom sediments of the Black sea from the 27 m depth. Luminescence parameters were registered at laboratory complex “Svet” using mechanical and chemical stimulations. Fungi cultures of genera Acremonium, Aspergillus, Penicillium were isolated on ChDA medium which served as control. Culture of Penicillium commune gave no light emission with any kind of stimulation. Culture of Acremonium sp. has shown luminescence in the blue – green field of spectrum. Using chemical stimulation by fresh water we registered signals with luminescence energy (to 3.24 ± 0.11)•108 quantum•cm2 and duration up to 4.42 s, which 3 times exceeded analogous magnitudes in a group, stimulated by sea water (p < 0.05). Under chemical stimulation by ethyl alcohol fungi culture luminescence was not observed. Culture of Aspergillus fumigatus possessed the most expressed properties of luminescence. Stimulation by fresh water culture emission with energy of (3.35 ± 0.11)•108 quantum•cm2 and duration up to 4.96 s. Action of ethyl alcohol to culture also stimulated signals, but intensity of light emission was 3–4 times lower than under mechanical stimulation. For sure the given studies will permit not only to evaluate contribution of marine fungi into general bioluminescence of the sea, but as well to determine places of accumulation of opportunistic species in the sea.


2018 ◽  
Vol 3 (2) ◽  
pp. 38-47
Author(s):  
Muhammad Abdul Azis ◽  
Nuryake Fajaryati

This research aims to create a Reosquido desalination tool for evaporation methods using a microcontroller. This tool can control the temperature to speed up the evaporation process in producing fresh water. The method applied to Reosquido desalination uses Evaporation. The first process before evaporation is the detection of temperature in sea water that will be heated using an element heater. The second process of temperature measurement is to turn off and turn on the Arduino Uno controlled heater, when the temperature is less than 80 ° then the heater is on. The third process is evaporation during temperatures between 80 ° to 100 °, evaporation water sticks to the glass roof which is designed by pyramid. Evaporated water that flows into the reservoir is detected by its solubility TDS value. The fourth process is heater off when the temperature is more than 100 °. Based on the results of the testing, the desalination process using a microcontroller controlled heater can speed up the time up to 55% of the previous desalination process tool, namely manual desalination prsoes without using the heater element controlled by the temperature and controlled by a microcontroller which takes 9 hours. Produces fresh water as much as 30ml from 3000ml of sea water, so that it can be compared to 1: 100.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 377
Author(s):  
Federico Leon ◽  
Alejandro Ramos-Martin ◽  
Sebastian Ovidio Perez-Baez

The water situation in the Canary Islands has been a historical problem that has been sought to be solved in various ways. After years of work, efforts have focused on desalination of seawater to provide safe water mainly to citizens, agriculture, and tourism. Due to the high demand in the Islands, the Canary Islands was a pioneering place in the world in desalination issues, allowing the improvement of the techniques and materials used. There are a wide variety of technologies for desalination water, but nowadays the most used is reverse osmosis. Desalination has a negative part, the energy costs of producing desalinated water are high. To this we add the peculiarities of the electricity generation system in the Canary Islands, which generates more emissions per unit of energy produced compared to the peninsular generation system. In this study we have selected a desalination plant located on the island of Tenerife, specifically in the municipality of Granadilla de Abona, and once its technical characteristics have been known, the ecological footprint has been calculated. To do this we have had to perform some calculations such as the capacity to fix carbon dioxide per hectare in the Canary Islands, as well as the total calculation of the emissions produced in the generation of energy to feed the desalination plant.


2021 ◽  
Vol 13 (11) ◽  
pp. 2070
Author(s):  
Ana Basañez ◽  
Vicente Pérez-Muñuzuri

Wave energy resource assessment is crucial for the development of the marine renewable industry. High-frequency radars (HF radars) have been demonstrated to be a useful wave measuring tool. Therefore, in this work, we evaluated the accuracy of two CODAR Seasonde HF radars for describing the wave energy resource of two offshore areas in the west Galician coast, Spain (Vilán and Silleiro capes). The resulting wave characterization was used to estimate the electricity production of two wave energy converters. Results were validated against wave data from two buoys and two numerical models (SIMAR, (Marine Simulation) and WaveWatch III). The statistical validation revealed that the radar of Silleiro cape significantly overestimates the wave power, mainly due to a large overestimation of the wave energy period. The effect of the radars’ data loss during low wave energy periods on the mean wave energy is partially compensated with the overestimation of wave height and energy period. The theoretical electrical energy production of the wave energy converters was also affected by these differences. Energy period estimation was found to be highly conditioned to the unimodal interpretation of the wave spectrum, and it is expected that new releases of the radar software will be able to characterize different sea states independently.


Sign in / Sign up

Export Citation Format

Share Document