scholarly journals A Modular Reactor for Thermochemical Energy Storage Examination of Ettringite-Based Materials

Proceedings ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 18 ◽  
Author(s):  
Chen ◽  
Kuznik ◽  
Horgnies ◽  
Johannes ◽  
Morin ◽  
...  

More attention on renewable energy has been attracted after the achievement of Paris Agreement against climate change. Solar-based technology is supposed to be one of the most promising green energy technologies for residential buildings since its wide thermal usage for hot water and heating. However, the seasonal mismatch between its energy-production and consumption makes buildings need an energy storage system to improve the efficiency of renewable energy use. Indeed, even if different kinds of energy storage systems using sensible or latent heat already exist, thermochemical energy storage can be then recommended by considering the problems of energy dissipation during storage and low energy density for the first two methods. As potential thermochemical storage materials, ettringite (3CaO∙Al2O3∙3CaSO4∙32H2O) based materials possess high energy densities (~500 kWh/m3), low material cost (<1000 €/m3) and low storage temperature (~60–70°C), compared to salt hydrates of similar energy density like SrBr2·6H2O (42 k€/m3, ~80°C), LaCl3·7H2O (38 k€/m3, ~100°C) and MgSO4·7H2O (5 k€/m3, ~150°C). Therefore, ettringite-based materials have the possibility to be largely used in building sector by being coupled to normal solar collector systems via reversible chemical reactions (Equation (1)): (i) charging mode: hot air or hot water (>70°C) from solar collectors dehydrates ettringite to meta-ettringite, and consequently store heat to chemical energy; ii) discharging mode: humid air is pumped to material container to rehydrate meta-ettringite, and consequently release stored chemical energy as heating. However, the lack of extensive examination leads to poor knowledge on their thermal properties and limits maturity of this technology. Therefore, the aim of this work is to characterize the capacity of an ettringite-based material (named C80P20, containing ~70 wt.% ettringite) in terms of thermal energy storage by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Besides, a modular reactor adapting to thermal characterizations of C80P20 particles has been developed for various weights (up to 300 grams). In our case, the energy density of pure ettringite is around 1012 J/g while 708 J/g for C80P20 powder in TGA-DSC. First preliminary results from modular reactor demonstrate a general energy density of 150 kWh/m3 released by the hydration process of C80P20 grains (pre-dehydrated at 80 °C) at 25 °C and 85% relative humidity. Moreover, the reactor is intended to study the durability of the energy storage material over time, and also as function of the number of charging/discharging cycles.CaO∙Al2O3∙3CaSO4∙32H2O ettringite+heat↔3CaO∙Al2O3∙3CaSO4∙32-XH2Ometa-ettringite+XH2O

RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5432-5443
Author(s):  
Shyam K. Pahari ◽  
Tugba Ceren Gokoglan ◽  
Benjoe Rey B. Visayas ◽  
Jennifer Woehl ◽  
James A. Golen ◽  
...  

With the cost of renewable energy near parity with fossil fuels, energy storage is paramount. We report a breakthrough on a bioinspired NRFB active-material, with greatly improved solubility, and place it in a predictive theoretical framework.


2018 ◽  
Vol 10 (8) ◽  
pp. 2660 ◽  
Author(s):  
Yi Yuan ◽  
Yingjie Li ◽  
Jianli Zhao

The intermittent and inconsistent nature of some renewable energy, such as solar and wind, means the corresponding plants are unable to operate continuously. Thermochemical energy storage (TES) is an essential way to solve this problem. Due to the advantages of cheap price, high energy density, and ease to scaling, CaO-based material is thought as one of the most promising storage mediums for TES. In this paper, TES based on various cycles, such as CaO/CaCO3 cycles, CaO/Ca(OH)2 cycles, and coupling of CaO/Ca(OH)2 and CaO/CaCO3 cycles, were reviewed. The energy storage performances of CaO-based materials, as well as the modification approaches to improve their performance, were critically reviewed. The natural CaO-based materials for CaO/Ca(OH)2 TES experienced the multiple hydration/dehydration cycles tend to suffer from severe sintering which leads to the low activity and structural stability. It is found that higher dehydration temperature, lower initial sample temperature of the hydration reaction, higher vapor pressure in the hydration reactor, and the use of circulating fluidized bed (CFB) reactors all can improve the energy storage performance of CaO-based materials. In addition, the energy storage performance of CaO-based materials for CaO/Ca(OH)2 TES can be effectively improved by the various modification methods. The additions of Al2O3, Na2Si3O7, and nanoparticles of nano-SiO2 can improve the structural stabilities of CaO-based materials, while the addition of LiOH can improve the reactivities of CaO-based materials. This paper is devoted to a critical review on the development on thermochemical energy storage based on CaO-based materials in the recent years.


RSC Advances ◽  
2014 ◽  
Vol 4 (44) ◽  
pp. 22840-22847 ◽  
Author(s):  
Hitesh Borkar ◽  
V. N. Singh ◽  
B. P. Singh ◽  
M. Tomar ◽  
Vinay Gupta ◽  
...  

Round the globe, scientific communities have been searching for new materials for “green” energy, producing efficiently both high power as well as high energy density.


Author(s):  
Zhiqiang Luo ◽  
Silin Zheng ◽  
Shuo Zhao ◽  
Xin Jiao ◽  
Zongshuai Gong ◽  
...  

Benzoquinone with high theoretical capacity is anchored on N-plasma engraved porous carbon as a desirable cathode for rechargeable aqueous Zn-ion batteries. Such batteries display tremendous potential in large-scale energy storage applications.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4284
Author(s):  
Min-Hwi Kim ◽  
Youngsub An ◽  
Hong-Jin Joo ◽  
Dong-Won Lee ◽  
Jae-Ho Yun

Due to increased grid problems caused by renewable energy systems being used to realize zero energy buildings and communities, the importance of energy sharing and self-sufficiency of renewable energy also increased. In this study, the energy performance of an energy-sharing community was investigated to improve its energy efficiency and renewable energy self-sufficiency. For a case study, a smart village was selected via detailed simulation. In this study, the thermal energy for cooling, heating, and domestic hot water was produced by ground source heat pumps, which were integrated with thermal energy storage (TES) with solar energy systems. We observed that the ST system integrated with TES showed higher self-sufficiency with grid interaction than the PV and PVT systems. This was due to the heat pump system being connected to thermal energy storage, which was operated as an energy storage system. Consequently, we also found that the ST system had a lower operating energy, CO2 emissions, and operating costs compared with the PV and PVT systems.


Nanoscale ◽  
2021 ◽  
Author(s):  
Woong Choi ◽  
Joon Woo Park ◽  
Woonghyeon Park ◽  
Yousung Jung ◽  
Hyunjoon Song

Electrochemical CO2 reduction reaction (eCO2RR) has been considered one of the potential technologies to store electricity from renewable energy sources into chemical energy. For this aim, designing catalysts with high...


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3586
Author(s):  
Qi An ◽  
Xingru Zhao ◽  
Shuangfu Suo ◽  
Yuzhu Bai

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g−1 and a charge capacity of 945.8 mA h g−1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg−1), a high power density (10.94 kW kg−1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.


Smart Cities ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 471-495
Author(s):  
Viktor Stepaniuk ◽  
Jayakrishnan Pillai ◽  
Birgitte Bak-Jensen ◽  
Sanjeevikumar Padmanaban

The smart active residential buildings play a vital role to realize intelligent energy systems by harnessing energy flexibility from loads and storage units. This is imperative to integrate higher proportions of variable renewable energy generation and implement economically attractive demand-side participation schemes. The purpose of this paper is to develop an energy management scheme for smart sustainable buildings and analyze its efficacy when subjected to variable generation, energy storage management, and flexible demand control. This work estimate the flexibility range that can be reached utilizing deferrable/controllable energy system units such as heat pump (HP) in combination with on-site renewable energy sources (RESs), namely photovoltaic (PV) panels and wind turbine (WT), and in-house thermal and electric energy storages, namely hot water storage tank (HWST) and electric battery as back up units. A detailed HP model in combination with the storage tank is developed that accounts for thermal comforts and requirements, and defrost mode. Data analytics is applied to generate demand and generation profiles, and a hybrid energy management and a HP control algorithm is developed in this work. This is to integrate all active components of a building within a single complex-set of energy management solution to be able to apply demand response (DR) signals, as well as to execute all necessary computation and evaluation. Different capacity scenarios of the HWST and battery are used to prioritize the maximum use of renewable energy and consumer comfort preferences. A flexibility range of 22.3% is achieved for the scenario with the largest HWST considered without a battery, while 10.1% in the worst-case scenario with the smallest HWST considered and the largest battery. The results show that the active management and scheduling scheme developed to combine and prioritize thermal, electrical and storage units in buildings is essential to be studied to demonstrate the adequacy of sustainable energy buildings.


Sign in / Sign up

Export Citation Format

Share Document