scholarly journals Genotypic Effects on the Response of Soybean (Glycine max (L.) Merrill) to Sulfonylurea Herbicides

Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 151
Author(s):  
Catherine Lawn ◽  
Andrew T. James ◽  
Mark Dieters

In soybean cropping, sulfonylurea (SU) herbicides are a potentially useful alternative to glyphosate-based herbicides. Normally, soybeans are susceptible to SU herbicides, but two unlinked non-GMO genes (ALS1 and ALS2), have been identified that confer SU tolerance. In this project, we explored the effectiveness of these genes in Australian soybean genetic backgrounds. Four lines, carrying both ALS1 and ALS2, were derived by backcrossing different Australian genotypes to a SU-tolerance donor line ‘W4-4’ and then using molecular markers, plants homozygous for both ALS genes were selected. The W4-4 donor and the four derived lines were evaluated in a hydroponic system at increments up to 4× the recommended field rate of metsulfuron-methyl. The ALS genes provided high levels of tolerance, with evidence of some minor interaction with the genetic background. To further test whether there was an effect of background, the five lines were crossed together in a half-diallel mating design and the resulting ten F2 populations were screened hydroponically for tolerance to metsulfuron-methyl herbicide at 4× the recommended field rate. Analyses of seedling dry weight of the five parental lines and their F2 progeny in response to the herbicide, identified differences among the crosses. These results indicated that the development of commercial varieties with maximum herbicide tolerance requires incorporation of both ALS genes, and if combined with selection in segregating populations in the presence of SU herbicide may capture additional tolerance from background genes of minor effect.

2020 ◽  
Vol 27 (2) ◽  
pp. 251-266
Author(s):  
Muhammad Ehsan Safdar ◽  
Muhammad Ather Nadeem ◽  
Abdul Rehman ◽  
Amjed Ali ◽  
Nasir Iqbal ◽  
...  

Little is known about best herbicidal weed option for weed eradication in soybean in agro-climatic circumstances of Sargodha, Punjab, Pakistan. A two year field study was accomplished at College of Agriculture experimental site Sargodha in spring seasons of 2018 and 2019 to evaluate the efficacy of different herbicides adjacent to major weeds present in soybean. The study consisted of 8 herbicide treatments including two pre-emergence herbicides (pendimethalin at 489.1 g a.i. ha-1, pendimethalin + S-metolachlor at 731.1 g a.i. ha-1) which are applied immediately after sowing and six post-emergence herbicides (oxyfluorfen at 237.1 g a.i. ha-1, metribuzin at 518.7 g a.i. ha-1, quizalofop-p-ethyl at 148.2 g a.i. ha-1, acetochlor at 741 g a.i. ha-1, halosulfuron at 37 g a.i. ha-1and topramezone at 21.5 g a.iha-1) which were used 25 days subsequent to sowing. In contrast to control, all herbicides have shown significant decline in weed density (up to 94%) and dry weight (up to 88%); and caused significant increases in plant height (up to 85%), pod bearing branches (up to 77%), number of pods per plant (up to 83%), 100-seed weight (up to 37%) and seed yield (up to 160%) of soybean. Among herbicides, topramezone at 21.5 g a.i ha-1 gave significantly the highest (1234 and 1272 kg ha-1 in the year 2018 and 2019) seed yield of soybean and HEIs (1.28 and 1.03 in year 2018 and 2019, respectively). However, oxyfluorfen at 237.1 g a.i. ha-1, pendimethalin + S-metolachlor at 731.1 g a.i. ha-1, pendimethalin at 489.1 g a.i. ha-1, quizalofop-p-ethyl at 148.2 g a.i.ha-1 followed it. The regression analysis depicted a significant negative moderate relationship of soybean seed yield with weed dry weight (R2 = 0.7074), and pods per plant (R2 = 0.7012) was proved to be the main yield component responsible for higher yield of soybean.


Plant Disease ◽  
2018 ◽  
Vol 102 (1) ◽  
pp. 114-123 ◽  
Author(s):  
A. Lebreton ◽  
C. Labbé ◽  
M. De Ronne ◽  
A. G. Xue ◽  
G. Marchand ◽  
...  

Phytophthora root rot, caused by Phytophthora sojae, is one of the most damaging diseases of soybean and the introgression of Rps (Resistance to P. sojae) genes into elite soybean lines is arguably the best way to manage this disease. Current bioassays to phenotype the gene-for-gene relationship are hampered with respect to reproducibility and long-term stability of isolates, and do not accurately predict horizontal resistance individually. The aim of our study was to investigate a new way of phenotyping P. sojae isolates and vertical and horizontal resistance in soybean that relies on zoospores inoculated directly into a hydroponic system. Inoculation of P. sojae isolates against a set of eight differentials accurately and reproducibly identified pathotypes over a period of two years. When applied to test vertical resistance of soybean lines with known and unknown Rps genes, the bioassay relied on plant dry weight to correctly identify all genes. In addition, simultaneous inoculations of three P. sojae isolates, collectively carrying eight major virulence factors against 64 soybean lines with known and unknown levels of horizontal resistance, separated the plants into five distinct groups of root rot, allowing the discrimination of lines with various degrees of partial resistance. Based on those results, this bioassay offers several advantages in facilitating efforts in breeding soybean for P. sojae resistance and in identifying virulence factors in P. sojae.


1974 ◽  
Vol 52 (7) ◽  
pp. 1747-1755 ◽  
Author(s):  
P. A. Sargent ◽  
J. King

Cells cultured in sterile, liquid media from a number of Phaseolus spp., soybean cotyledons, shoots, and roots and from rice explants grew, in terms of dry-weight increase, much better in the presence of NH4+ and NO3− as sources of nitrogen than with NO3− alone. Other cultures tested, including other legumes, either did not respond positively to added NH4+ or, as in the case of Haplopappus gracilis cells, grew better in its absence.Earlier it had been shown that soybean (Glycine max. L. cv. Mandarin) root cells grew better in the presence of NH4+ than in its absence and that 'conditioning' substances were produced by cells and excreted into the medium between about the 15th and 35th h of incubation. These observations and those above with other cell cultures led to the initiation of an investigation of why some cells respond to NH4+ while others do not.This investigation has so far taken the form of an analysis of nitrogenous compounds in soybean root cells and in the NH4+-containing medium in which they were grown during 120 h of incubation and especially after 24 h of incubation, the time of maximum production of growth-enhancing ability in both cells and medium.Growth enhancement can be accounted for, apparently, by the occurrence of residual NH4+ in conditioned medium and by the presumed occurrence of NH4+ in cells. However, glutamine and its derivatives are implicated in the conditioning process.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 207 ◽  
Author(s):  
Leo Sabatino ◽  
Georgia Ntatsi ◽  
Giovanni Iapichino ◽  
Fabio D’Anna ◽  
Claudio De Pasquale

Selenium (Se) is an essential element for humans’ health and the recommended amount (RDA) of Se intake per adult is 55–70 µg day−1. The main source for Se intake is represented by diet, but its concentration in vegetables is generally limited with respect to human needs. The aim of this research was to assess the effect of Se application rate and type (fertigation or foliar spray) on yield, functional properties and mineral composition of curly endive grown in a hydroponic system. Five levels of Se (0.0, 1.0, 2.0, 4.0 and 8.0 µmol L−1) were supplied via fertigation or by foliar spray in the form of selenate (Na2SeO4). The results show that a Se implementation of 4 μmol Se L−1 for plants enriched via fertigation and 8 μmol Se L−1 for plants biofortified via foliar spray successfully enhanced production performance parameters such as head weight (42.6% and 27.8%, respectively), SSC (16.7% and 14.3%, respectively), ascorbic acid (33.2% and 33.7%, respectively), total phenolic (58.9% and 54.5%, respectively) and Se concentration (22.2% and 20.3%, respectively). Furthermore, leaf Se concentration in plants enriched via fertigation ranged 0.71–17.61 mg kg−1 of dry weight (DW), whereas, in plant biofortified via foliar spray leaf Se concentration ranged 0.72–12.67 mg kg−1 DW. Plants grown with the highest dosage of Se distributed via fertigation or foliar spray showed a reduction in total-N leaf concentration by 39.4% and 28.6%, respectively, compared with the non-enriched plants. Our results indicate a consumption of 47.4 g day−1 of Se-enriched curly endive grown in soilless culture and treated with 8 μmol L−1 of selenate applied via foliar spray could be sufficient to cover the human physiological needs of this element.


2019 ◽  
Vol 70 (7) ◽  
pp. 585 ◽  
Author(s):  
Xiaoning Cao ◽  
Tingting Wu ◽  
Shi Sun ◽  
Cunxiang Wu ◽  
Caijie Wang ◽  
...  

Root traits are essential for optimising nutrient and water absorption and anchorage. However, changes in root traits and the contribution of root-to-shoot growth and development of soybean (Glycine max (L.) Merr.) across a century of breeding are poorly documented. In this study, we adopted a grafting technique, using 55 cultivars released in the three main soybean-production regions in China as rootstocks in a pot experiment and 24 cultivars from the Yellow-Huai-Hai Valley (YHH) region as rootstocks in a field experiment, with cv. Zigongdongdou as the common scion. Changes in soybean roots, including dry weight (DW) of roots, lateral root number (LRN) and taproot length (TRL), and their contribution to shoot development and biomass formation, including shoot DW, plant height and node number, were evaluated under optimal conditions in 2011. Aboveground traits declined with year of release in the YHH region and did not vary over time in the northern Heilongjiang province and mid-south Heilongjiang region except for shoot DW. The root traits root DW, LRN and TRL were similar over years of release in the pot and field experiments. The results suggest that the newer cultivars have lesser shoot growth and root capacity but the same amount of root growth as older cultivars. Root traits did not change during selection, suggesting that improvement in soybean root traits should be an aim in future breeding.


Weed Science ◽  
1980 ◽  
Vol 28 (3) ◽  
pp. 352-357 ◽  
Author(s):  
Lloyd C. Haderlie

Absorption and translocation of buthidazole [3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone] was determined in several plant tissues. Buthidazole caused slight effects on seed germination. Germination of soybean (Glycine max L.Merr. ‘Williams’) seeds was inhibited up to 15% and velvetleaf (Abutilon theophrastiMedic.) was stimulated up to 13%. Buthidazole was absorbed by germinating soybeans, velvetleaf, and corn (Zea maysL.) with rate of absorption increasing when roots were capable of absorption. Buthidazole concentrations of 0.5 μM or greater inhibited growth of soybean in the early second-trifoliolate growth stage when supplied to the roots in nutrient solution. Within 96 h, 29% of the buthidazole available to soybeans was absorbed from nutrient solution and 89% of that absorbed was found in the shoots. The expanded leaves of soybean accumulated the majority of the radioactivity. Radioactivity in roots of soybean approached a steady state condition within 96 h, whereas14C continued to increase in shoots. Foliar absorption of buthidazole in soybean greatly increased when any one of several surfactants were used. Soybean dry weight reduction nearly doubled by adding surfactants. Over 60% of the14C-buthidazole applied to soybean leaves was absorbed within 1.5 h, and increased to 73% by 96 h when the nonionic surfactant, AL-411-F3[Phytobland Spray Oil (83%) plus ATPLUS 300F (17%)] was used compared to only 7% in 96 h without the surfactant. There was little or no movement of buthidazole from the treated leaves. Translocation was typical of apoplastic movement.


1997 ◽  
Vol 77 (1) ◽  
pp. 181-188
Author(s):  
A. L. Darwent ◽  
L. P. Lefkovitch ◽  
P. F. Mills

Field and controlled environment experiments were conducted at Beaverlodge, Alberta to determine the effect of soil temperature, seeding depth and cultivar on wheat (Triticum aestivum L.) tolerance to ethalfluralin. In one experiment, ethalfluralin was applied and incorporated, and wheat was seeded at several depths in late April/early May when soil temperatures were lowest or in late May when soil temperatures had increased. Mean 3-yr wheat yields decreased by 45% as the rate of ethalfluralin increased from 0 to 0.75 kg ha−1 and by 21% as the depth of seeding increased from 4 to 12.5 cm but the effect of ethalfluralin on yields was similar regardless of the soil temperature (time of seeding). Mean plant density decreased by 55% as the rate of ethalfluralin increased and by 25% as the depth of seeding increased. Reductions in mean plant density from ethalfluralin were slightly greater when seeded into the warmer soils. In another experiment, the effect of ethalfluralin on the yields of three wheat cultivars, Laura, Conway and Biggar was similar, i.e. the cultivar × rate of ethalfluralin interaction was not significant. However, the mean plant density of Biggar, averaged over rates of ethalfluralin, was less than that of the other cultivars in 1 of 2 yr. In a controlled environment experiment, the oven-dry weight and percent emergence of wheat shoots of the cultivars, Katepwa, Laura and Conway, seeded at 1.5 or 4 cm into soils containing ethalfluralin at concentrations of 0 to 4 ppm and maintained at temperatures of 4.5 or 15 °C, were reduced by decreases in temperature and increases in the rate of herbicide and depth of seeding. However, the interaction of soil temperature × rate of ethalfluralin was not significant for the oven-dry weight of the wheat shoots and the reduction in percent emergence of the wheat shoots as the rate of ethalfluralin increased was only slightly greater at 4.5 °C than at 15 °C. These results indicate that soil temperature and cultivar selection have a minor effect on wheat tolerance to ethalfluralin while herbicide concentration and depth of seeding have a major impact. Key words: Ethalfluralin, wheat, seeding depth, soil temperature, cultivar


2016 ◽  
Vol 50 (2) ◽  
Author(s):  
Dhirender Choudhary ◽  
P. K. Singh ◽  
N. K. Chopra ◽  
S. C. Rana

A field investigation was carried out to evaluate the effect of herbicides and their mixtures on weeds in wheat (<italic>Triticum aestivum</italic> L.) cv. PBW-343. Minimum weed density per m<sup>2</sup> and weed dry weight (5.13 and 17.31g) was recorded with sulfosulfuron at 25g ha<sup>−1</sup> followed by clodinofop at 60g + metsulfuron methyl at 4g ha<sup>−1</sup> (5.19 and 18.45g), metribuzin at 200gha<sup>−1</sup>(5.85 and 25.98g), pendimethalin at 1000g fb 2,4-Dat400g ha<sup>−1</sup> (6.49 and 31.73g) and hand weeding twice(7.01 and 35g), respectively. Also, maximum weed control efficiency was recorded under sulfosulfuron at 25g ha<sup>−1</sup> (83.85%) followed by clodinofop at 60g + metsulfuron methyl at 4g ha<sup>−1</sup> (83.17%) and metribuzin at 200g ha<sup>−1</sup> (75.85%), respectively. All the weed control treatments recorded significantly higher harvest index than the weedy check (40.24). Among various herbicidal treatments, application of clodinofop at 60g + metsulfuron methyl at 4g ha<sup>−1</sup> recorded highest harvest index (41.91) followed by sulfosulfuron at 25 gha<sup>−1</sup> (41.83) and pendimethalin at 1000g fb2,4-Dat 400gha<sup>−1</sup> (41.25) respectively. The harvest index recorded under clodinofop at 60g + metsulfuron methyl at 4g ha<sup>−1</sup> and sulfosulfuron at 25 g ha<sup>−1</sup> was significantly at par with weed free (42.06).


2009 ◽  
Vol 89 (2) ◽  
pp. 265-272
Author(s):  
L. R. Brown ◽  
D. E. Robinson ◽  
K. Chandler ◽  
C. J. Swanton ◽  
R. E. Nurse ◽  
...  

There have been anecdotal accounts of increased crop sensitivity due to herbicide drift followed by an in-crop herbicide. An experiment was conducted from 2005 to 2007 at Elora, Ridgetown, and Woodstock, Ontario, to determine the effects of simulated mesotrione drift followed by in-crop applications of glyphosate, imazethapyr, bentazon and glyphosate plus chlorimuron on glyphosate-resistant soybean [Glycine max (L.) Merr.] visual injury, plant height, plant density, shoot dry weight, and seed yield. As the rate of simulated mesotrione drift increased, there was an increase in soybean injury and a decrease in shoot dry weight, height, and yield. Simulated mesotrione drift followed by bentazon resulted in synergistic responses in injury shortly after application in some environments. This increase in injury was transient, with no synergistic responses in density, shoot dry weight, and yield. In contrast, antagonistic responses were observed when glyphosate, imazethapyr, or glyphosate plus chlorimuron were applied after simulated mesotrione drift in some environments. Further research is required to develop a better understanding of the interactions of drift followed by the application of an in-crop herbicide. Key words: Bentazon, chlorimuron, glyphosate, imazethapyr, mesotrione, synergism


Sign in / Sign up

Export Citation Format

Share Document