scholarly journals Antimicrobial Activity of Phenolic Compounds Extracted from Platanus hybrida: Exploring Alternative Therapies for a Post-Antibiotic Era

Proceedings ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 18
Author(s):  
Jessica Ribeiro ◽  
Vanessa Silva ◽  
Alfredo Aires ◽  
Rosa Carvalho ◽  
Gilberto Igrejas ◽  
...  

Multidrug-resistant bacteria are a significant threat to public health and new classes of antibiotics and approaches to treatment are needed. Several studies have shown that natural plant-derived compounds could be a promising mean to fight microbial resistance but only a few were conducted with antibiotic resistant bacteria. Therefore, the aim of this study was to extract phenolic compounds from the leaves, fruits, and tree trunk of Platanus hybrida and evaluate their antimicrobial activity against antibiotic resistant bacterial strains. The polyphenolic compounds were extracted using a water/ethanol (20:80) mixture. Two grams of powder of each sample was extracted with 100 mL of solvent by stirring for 2h. The extracts were redissolved in dimethyl sulfoxide (DMSO) to a final concentration of 100 mg/mL. An antimicrobial susceptibility assay was performed using the Kirby–Bauer disc diffusion method and was tested against ten different bacteria: Listeria monocytes, Bacillus cereus, Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella enteritidis, Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli. The fruits had the highest antibacterial activity showing a minimum inhibitory concentration (MIC) of 10mg/mL, contrary to the tree trunk that showed the lowest antibacterial activity. None of the extracts showed antimicrobial properties against S. enteritidis, E. faecium and E. faecalis. These results show that P. hybrida’s phenolic compounds act as antibacterial agents, which may become useful therapeutic tools and represent a source for the development of novel antimicrobials. However, they were not effective against all bacteria, which shows that polyphenols alone might not substitute antibiotics.

Antioxidants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 87 ◽  
Author(s):  
Vanessa Silva ◽  
Virgílio Falco ◽  
Maria Inês Dias ◽  
Lillian Barros ◽  
Adriana Silva ◽  
...  

The chestnut industry generates a large amount of by-products. These agro-industrial wastes have been described as potential sources of phenolic compounds with high bioactive potential. Therefore, we aimed to extract the phenolic compounds from chestnut by-products and assess their antioxidant potential and evaluate their antimicrobial activity against multidrug resistant bacteria. The individual phenolic compounds in the ethanolic extracts of chestnut shell, inner shell, bur, and leaves were characterized by HPLC-DAD/electrospray ionization (ESI)-MS. The antioxidant properties were determined by DPPH and ABTS assays. The minimum inhibitory concentration (MIC) and the antimicrobial susceptibility was performed using the Kirby–Bauer disc diffusion method against 10 bacterial strains. The major phenolic compounds identified in the extracts were trigalloyl-HHDP-glucose, gallic acid, quercetin, and myricetin glycoside derivatives. All chestnut by-products presented promising antioxidant activity in both assays, with leaf samples the ones presenting the highest antioxidant capacity. The inner shell’s extract was effective against all Gram-positive and two Gram-negative bacteria; nevertheless, all extracts showed antibacterial activity. Staphylococcus epidermidis showed susceptibility to all extracts while none of the extracts was able to suppress the growth of Escherichia coli and Salmonella enteritidis. Chestnut by-products are a source of phenolic compounds with prominent antioxidant and antimicrobial activities. Nevertheless, further studies should be conducted to assess the correlation between phenolic compounds and the bioactivities obtained.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 401
Author(s):  
Ignacio A. Jessop ◽  
Yasmín P. Pérez ◽  
Andrea Jachura ◽  
Hipólito Nuñez ◽  
Cesar Saldías ◽  
...  

In the search for new materials to fight against antibiotic-resistant bacteria, a hybrid composite from metallic copper nanoparticles (CuNPs) and a novel cationic π-conjugated polyelectrolyte (CPE) were designed, synthesized, and characterized. The CuNPs were prepared by chemical reduction in the presence of CPE, which acts as a stabilizing agent. Spectroscopic analysis and electron microscopy showed the distinctive band of the metallic CuNP surface plasmon and their random distribution on the CPE laminar surface, respectively. Theoretical calculations on CuNP/CPE deposits suggest that the interaction between both materials occurs through polyelectrolyte side chains, with a small contribution of its backbone electron density. The CuNP/CPE composite showed antibacterial activity against Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Escherichia coli and Salmonella enteritidis) bacteria, mainly attributed to the CuNPs’ effect and, to a lesser extent, to the cationic CPE.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


2018 ◽  
Vol 16 (5) ◽  
pp. 341-348
Author(s):  
On-Anong SOMSAP

Antibiotic resistance bacteria has become an increasing problem now today due to many factors. This study investigates the efficacy of Prismatomeris tetrandra K. Schum root extract as a new source of antibacterial activity for antibiotic resistant bacteria using agar well diffusion method. The results showed that S. aureus TISTR517 exhibited more sensitivity to P. tetrandra K. Schum root extract than other Gram-positive bacteria indicator strains. On the other hand, Gram-negative bacteria exhibited resistance to P. tetrandra K. Schum root extract. The study further showed the activity between P. tetrandra K. Schum root extract and gentamycin (10 µg), it revealed that MRSA142 was resistant to gentamycin (10µg) but sensitive to P. tetrandra K. Schum root extract. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was evaluated by using S. aureus TISTR517 and MRSA142 as indicator strains. The MIC value was 0.59 mg/mL and 1.17 mg/mL for S. aureus TISTR517 and MRSA142, respectively. MBC assay demonstrated that the MBC value was 9.75 mg/mL and 150 mg/mL for S. aureus TISTR517 and MRSA142 respectively. The mode of action was investigated with the presence of P. tetrandra K. Schum root extract in the culture broth. The action of P. tetrandra K. Schum root extract was revealed of bacteriostatic activity due to the Optical density (OD) at 600 nm and Colony-Forming Units (CFU) of indicator strains were continuously decreased.


2010 ◽  
Vol 7 (3) ◽  
pp. 1159-1165
Author(s):  
Baghdad Science Journal

The antimicrobial activity of ginger extracts ( cold-water, hot-water, ethanolic and essential oil ) against some of pathogenic bacteria ( Escherichia coli , Salmonella sp , Klebsiella sp , Serratia marcescens, Vibrio cholerae , Staphylococcus aureus , Streptococcus sp) was investigated using Disc diffusion method , and the results were compared with the antimicrobial activity of 12 antibiotics on the same bacteria . The results showed that the ginger extracts were more effective on gram-positive bacteria than gram-negative . V. cholerae and S. marcescens,were the most resistant bacteria to the extracts used , while highest inhibition was noticed against Streptococcus sp (28 mm) . The ethanolic extract showed the broadest antibacterial activity ( 11 to 28 mm ) , in comparison with moderate activity of essential oil , it was observed that the cold-water extract was more effective on the bacteria than hot-water extract . Ginger ethanolic extract presented higher diameter of inhibition zone for Streptococcus sp than in Ciprofloxacin , Cefotaxime , Cefalotin , Cephalexin and Cephaloridine , also it was found a similarity between the higher inhibition zones of ethanolic extract of ginger and some antibiotics for S. aureus , E. coli , Salmonella sp and Klebsiella sp . V. cholerae and S. marcescens,also highly resistant to antibiotics . Phytochemical analysis of ethanolic extract of ginger revealed the present of glycosides, terpenoids, flavonids and phenolic compounds


2019 ◽  
Vol 65 (2) ◽  
pp. 99-102 ◽  
Author(s):  
Yu.V. Butina ◽  
T.V. Kudayarova ◽  
E.A. Danilova ◽  
M.K. Islyaikin

The work is devoted to predicting and studying biological properties of N-substituted analogs of 3,5-diamino-1,2,4-thiadiazole, which, in their turn, include in the composition of many drugs that exhibit a wide range of pharmacological actions. For searching of new alternative drugs with an antibacterial activity, but lacking resistance of microorganism strains to them, a computer screening of 2N-alkyl-substituted 5-amino-3-imino-1,2,4-thiadiazolines previously synthesized by us was carried out. The prediction of the spectrum of biological activity, as well as the determination of the probable toxicity of these compounds, was performed using the freely available computer programs PASS, Anti-Bac-Pred, and GUSAR. The study of the antibacterial activity in vitro against gram-positive (Staphylococcus aureus, Staphylococcus saprophyticus, Staphylococcus epidermidis) and gram-negative (Escherichia coli, Pseudomonas aeruginosae) bacterial strains was performed by the disco-diffusion method. Experimental data roughly correspond to the predictions.


2016 ◽  
Vol 53 ◽  
pp. 57-64
Author(s):  
Radia Mahboub ◽  
Faiza Memmou

We have studied the antimicrobial properties of 6-bromoeugenol and eugenol by three strains:Pseudomonas aeruginosa(S1),Escherichia coli(S2) andStaphylococcus aureus(S3). We have determined the minimum inhibitory concentration (MIC) for a range of concentrations using the disc diffusion method. We note that all samples present an antimicrobial activity toward the tested bacterial strains at different concentrations (1, 0.5 and 0.25 mg/ml). The 6-bromoeugenol gives modest activity with (S1) and (S3). Eugenol reacts positively with thePseudomonas aeruginosa(S1) at all concentrations and with theEscherichiacoli(S2) at 0.5 mg/ml. We remark that thePseudomonas aeruginosa(S1) is the more sensitive strain thanEscherichiacoli(S2) andStaphylococcus aureus(S3). We have estimated the activity coefficient which has confirmed the antimicrobial activity of the different samples. So, 6-bromoeugenol has shown his efficiency as antimicrobial agent.


Author(s):  
Bindhu R. Kamath ◽  
Sabeena Kizhedath

Background: Cassia fistula Linn is a plant which is widely grown in India and is used for medicinal purposes. The study was carried out with an objective to demonstrate the antimicrobial activity of leaves of Cassia fistula Linn. The aim of the study is to assess antibacterial and antifungal activity of methanolic leaf extract of Cassia fistula Linn against selected clinical isolates.Methods: The antimicrobial activity of methanolic extract of Cassia fistula was evaluated using agar well diffusion method and to zone of inhibition of extract was determined. Clinical isolates of Staphyloccocus aureus, MRSA, Pseudomonas aeruginosa, E. coli and Proteus were screened.Results: The methanolic extracts exhibited antibacterial activity against Staphylococcus aureus. The extract was not active against E. coli, Proteus, MRSA, Pseudomonas aeruginosa. The extract also failed to demonstrate antifungal activity against Candida albicans and Aspergillus niger.Conclusions: The global emergence of multidrug resistant bacterial strains is increasing, limiting the effectiveness of current drugs and treatment failure of infections. A novel approach to the prevention of antibiotic resistance of pathogenic species is the use of new compounds that are not based on existing synthetic antimicrobial agents.


Author(s):  
MOUSHUMI BAIDYA ◽  
ANBU J. ◽  
SEMIMUL AKHTAR ◽  
SIPRA SARKAR ◽  
SUDIP KUMAR MANDAL

Objective: The study was undertaken to evaluate the antimicrobial activity of ethanolic extract of polyherbal seed shells. Methods: The seed of Momordica charantia, Manikara zapota, Emblica officinalis, Syzygium cumini, collected from the local market, Mathikere, Bangalore, India. Ethanolic extract was prepared from the dried seed powders using solvent 80% ethanol. Initially, antimicrobial activity of the extract was performed by agar well diffusion method against two bacterial strains (Escherichia coli, and Staphylococcus aureus) and two fungal pathogens (Aspergillus niger and Candida albicans). Results: The antimicrobial study results revealed that the test extract was strongly inhibited the growth of bacteria, whereas it was not inhibited the growth of fungal organisms used in this study. Conclusion: The results suggest that ethanolic extract of seeds possess antimicrobial properties which can be used for the treatment of infectious diseases.


2021 ◽  
Vol 18 ◽  
Author(s):  
Khalida Bouarroudj-Hamici ◽  
Soraya Mettouchi ◽  
Lynda Medjkouh-Rezzak ◽  
Romain Larbat ◽  
Abderezak Tamendjari

Background: The olive tree (Olea europaea L.), the most widespread plant species in the Mediterranean basin, includes two forms: cultivated (var Europaea) and wild (var Sylvestris). Wild olive trees or oleasters cover large areas in Algeria. It has been shown that oil from oleaster has a higher content of phenolic compounds, which could have antimicrobial properties. Objective:: The objective of this study was to assess the antibacterial activity of phenolic extracts from four Algerian oleaster oils and an extra virgin olive oil (EVOO) from Chemlal variety. Methods: Phenolic compounds were determined by UHPLC-MS. Antibacterial activity was tested against six referenced human enteropathogenic bacteria by the agar disc diffusion method by measuring the diameters of the zone of inhibition. Results: The results revealed a similarity between the phenolic composition of oleasters 1 and 3 and between oleaster 4 and EVOO; however, the phenolic composition of oleaster 2 that the poorer was markedly different with a higher content of free phenolic alcohols and lower in secoiridoids.


Sign in / Sign up

Export Citation Format

Share Document