Antibacterial activity of the phenolic extract of wild virgin olive oil in vitro

2021 ◽  
Vol 18 ◽  
Author(s):  
Khalida Bouarroudj-Hamici ◽  
Soraya Mettouchi ◽  
Lynda Medjkouh-Rezzak ◽  
Romain Larbat ◽  
Abderezak Tamendjari

Background: The olive tree (Olea europaea L.), the most widespread plant species in the Mediterranean basin, includes two forms: cultivated (var Europaea) and wild (var Sylvestris). Wild olive trees or oleasters cover large areas in Algeria. It has been shown that oil from oleaster has a higher content of phenolic compounds, which could have antimicrobial properties. Objective:: The objective of this study was to assess the antibacterial activity of phenolic extracts from four Algerian oleaster oils and an extra virgin olive oil (EVOO) from Chemlal variety. Methods: Phenolic compounds were determined by UHPLC-MS. Antibacterial activity was tested against six referenced human enteropathogenic bacteria by the agar disc diffusion method by measuring the diameters of the zone of inhibition. Results: The results revealed a similarity between the phenolic composition of oleasters 1 and 3 and between oleaster 4 and EVOO; however, the phenolic composition of oleaster 2 that the poorer was markedly different with a higher content of free phenolic alcohols and lower in secoiridoids.

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1642
Author(s):  
Lucia Melguizo-Rodríguez ◽  
Elvira de Luna-Bertos ◽  
Javier Ramos-Torrecillas ◽  
Rebeca Illescas-Montesa ◽  
Victor Javier Costela-Ruiz ◽  
...  

The treatment of tissue damage produced by physical, chemical, or mechanical agents involves considerable direct and indirect costs to health care systems. Wound healing involves a series of molecular and cellular events aimed at repairing the defect in tissue integrity. These events can be favored by various natural agents, including the polyphenols in extra virgin olive oil (EVOO). The objective of this study was to review data on the potential effects of different phenolic compounds that can also be found in EVOO on wound healing and closure. Results of in vitro and animal studies demonstrate that polyphenols from different plant species, also present in EVOO, participate in different aspects of wound healing, accelerating this process through their anti-inflammatory, antioxidant, and antimicrobial properties and their stimulation of angiogenic activities required for granulation tissue formation and wound re-epithelialization. These results indicate the potential usefulness of EVOO phenolic compounds for wound treatment, either alone or in combination with other therapies. Human studies are warranted to verify this proposition.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 969 ◽  
Author(s):  
Lorena Martínez ◽  
Gaspar Ros ◽  
Gema Nieto

There is a high demand for functional meat products due to increasing concern about food and health. In this work, Zn and Se bioavailability was increased in chicken meat emulsions that are enriched with Hydroxytyrosol (HXT), a phenolic compound obtained from olive leaf. Six different chicken emulsions were elaborated. Three were made with broiler chicken meat supplemented with inorganic Zn and Se: control, one with HXT (50 ppm) added and one with HXT (50 ppm) and Extra Virgin Olive Oil (EVOO) (9.5%) added; and, three were made with chicken meat from chickens fed a diet that was supplemented with organic Zn and Se: control, one with HXT (50 ppm) added and one with HXT (50 ppm) and EVOO (9.5%) added. The samples were digested in vitro and the percent decomposition of phenolic compounds was measured by HPLC. Mineral availability (Fe, Zn and Se) was measured by cell culture of the Caco-2 cell line and the results were compared with mineral standards (Fe, Zn, and Se). The data obtained showed that neither HXT resistance to digestion nor Fe availability was affected by the presence of organic Zn and Se or phenolic compounds. Zn uptake increased in the presence of HXT, but not when its organic form was used, while Se uptake increased but it was not affected by the presence of HXT. It was concluded that the enrichment of meat—endogenously with organic minerals and exogenously with phenolic compounds—could be considered an interesting strategy for future research and applications in the current meat industry.


2005 ◽  
Vol 18 (1) ◽  
pp. 98-112 ◽  
Author(s):  
Elisa Tripoli ◽  
Marco Giammanco ◽  
Garden Tabacchi ◽  
Danila Di Majo ◽  
Santo Giammanco ◽  
...  

AbstractThe Mediterranean diet is rich in vegetables, cereals, fruit, fish, milk, wine and olive oil and has salutary biological functions. Epidemiological studies have shown a lower incidence of atherosclerosis, cardiovascular diseases and certain kinds of cancer in the Mediterranean area. Olive oil is the main source of fat, and the Mediterranean diet's healthy effects can in particular be attributed not only to the high relationship between unsaturated and saturated fatty acids in olive oil but also to the antioxidant property of its phenolic compounds. The main phenolic compounds, hydroxytyrosol and oleuropein, which give extra-virgin olive oil its bitter, pungent taste, have powerful antioxidant activity bothin vivoandin vitro. The present review focuses on recent works analysing the relationship between the structure of olive oil polyphenolic compounds and their antioxidant activity. These compounds' possible beneficial effects are due to their antioxidant activity, which is related to the development of atherosclerosis and cancer, and to anti-inflammatory and antimicrobial activity.


Author(s):  
Sangeetha B ◽  
Indra V ◽  
Abdul Rahim M ◽  
Venkadachalam E

Chitosan, a polysaccharide derivative of chitin forms the structural components in the exoskeletons of crustacean animals and is also found in the cell walls of fungi. Chitosan is produced primarily from the crab shell waste through chemical means. The chemical structure of chitosan has been identified and characterized by FT-IR and XRD. In the current study, the antimicrobial activity of chemically deacetylated chitosan extracts of mud crabs (Scylla serrata) was evaluated against five human pathogenic isolates viz. Staphylococcus aureus, Salmonella typhi, Klebsiella pneumonia, Bacillus cereus and Pseudomonas aeruginosa using agar disc diffusion method. These were performed to determine the crystallinity and functional properties of chitosan. The results showed that the antibacterial effect increased with increasing chitosan concentration. This study showed that chitosan isolated from crab shell has potential antibacterial activity therefore it can be utilized in the food and pharmaceutical industries, and that antibacterial activity may be due to functional groups present in the crab shell.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 685 ◽  
Author(s):  
Paloma Rodríguez-López ◽  
Jesús Lozano-Sanchez ◽  
Isabel Borrás-Linares ◽  
Tatiana Emanuelli ◽  
Javier A. Menéndez ◽  
...  

Extra-virgin olive oil is regarded as functional food since epidemiological studies and multidisciplinary research have reported convincing evidence that its intake affects beneficially one or more target functions in the body, improves health, and reduces the risk of disease. Its health properties have been related to the major and minor fractions of extra-virgin olive oil. Among olive oil chemical composition, the phenolic fraction has received considerable attention due to its bioactivity in different chronic diseases. The bioactivity of the phenolic compounds could be related to different properties such as antioxidant and anti-inflammatory, although the molecular mechanism of these compounds in relation to many diseases could have different cellular targets. The aim of this review is focused on the extra-virgin olive oil phenolic fraction with particular emphasis on (a) biosynthesis, chemical structure, and influence factors on the final extra-virgin olive oil phenolic composition; (b) structure–antioxidant activity relationships and other molecular mechanisms in relation to many diseases; (c) bioavailability and controlled delivery strategies; (d) alternative sources of olive biophenols. To achieve this goal, a comprehensive review was developed, with particular emphasis on in vitro and in vivo assays as well as clinical trials. This report provides an overview of extra-virgin olive oil phenolic compounds as a tool for functional food, nutraceutical, and pharmaceutical applications.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2345 ◽  
Author(s):  
Irene Dini ◽  
Giulia Graziani ◽  
Anna Gaspari ◽  
Francesca Luisa Fedele ◽  
Andrea Sicari ◽  
...  

The health advantages of extra-virgin olive oil (EVOO) are ascribed mainly to the antioxidant ability of the phenolic compounds. Secoiridoids, hydroxytyrosol, tyrosol, phenolic acid, and flavones, are the main nutraceutical substances of EVOO. Applications of beneficial microbes and/or their metabolites impact the plant metabolome. In this study the effects of application of selected Trichoderma strains or their effectors (secondary metabolites) on the phenolic compounds content and antioxidant potential of the EVOOs have been evaluated. For this purpose, Trichoderma virens (strain GV41) and Trichoderma harzianum (strain T22), well-known biocontrol agents, and two their metabolites harzianic acid (HA) and 6-pentyl-α-pyrone (6PP) were been used to treat plants of Olea europaea var. Leccino and var. Carolea. Then the nutraceutical potential of EVOO was evaluated. Total phenolic content was estimated by Folin–Ciocalteau’s assay, metabolic profile by High-Resolution Mass spectroscopy (HRMS-Orbitrap), and antioxidant activity by DPPH and ABTS assays. Our results showed that in the cultivation of the olive tree, T22 and its metabolites improve the nutraceutical value of the EVOOs modulating the phenolic profile and improving antioxidants activity.


2019 ◽  
Vol 65 (2) ◽  
pp. 99-102 ◽  
Author(s):  
Yu.V. Butina ◽  
T.V. Kudayarova ◽  
E.A. Danilova ◽  
M.K. Islyaikin

The work is devoted to predicting and studying biological properties of N-substituted analogs of 3,5-diamino-1,2,4-thiadiazole, which, in their turn, include in the composition of many drugs that exhibit a wide range of pharmacological actions. For searching of new alternative drugs with an antibacterial activity, but lacking resistance of microorganism strains to them, a computer screening of 2N-alkyl-substituted 5-amino-3-imino-1,2,4-thiadiazolines previously synthesized by us was carried out. The prediction of the spectrum of biological activity, as well as the determination of the probable toxicity of these compounds, was performed using the freely available computer programs PASS, Anti-Bac-Pred, and GUSAR. The study of the antibacterial activity in vitro against gram-positive (Staphylococcus aureus, Staphylococcus saprophyticus, Staphylococcus epidermidis) and gram-negative (Escherichia coli, Pseudomonas aeruginosae) bacterial strains was performed by the disco-diffusion method. Experimental data roughly correspond to the predictions.


Antioxidants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 217 ◽  
Author(s):  
Thays Helena Borges ◽  
Adriana Serna ◽  
Luis Carlos López ◽  
Luis Lara ◽  
Rosa Nieto ◽  
...  

The health benefits of extra virgin olive oil (EVOO) are related to its chemical composition and the presence of bioactive compounds with antioxidant properties. The aim of this study was to evaluate antioxidant compounds (pigments, coenzyme Q10 (CoQ10) and phenolic compounds) and antioxidant properties of EVOO from the same region comparing different cultivars (Hojiblanca and Arbequina), harvest year and crop stage. Antioxidant properties of oils were studied before and after a gastrointestinal digestion process, by in vitro assays (DPPH, ABTS and FRAP) and antioxidant markers in Caco-2 cells (reactive oxygen species production). The content of bioactive compounds measured was significantly affected by cultivar and harvest year (except for carotenoids) and by the crop stage (except for coenzyme Q10). Higher amounts of coenzyme Q10 were observed in Hojiblanca than in Arbequina EVOO. Total phenol content and antioxidant properties were also different depending on cultivar and harvest year and the in vitro digestion process strongly improved antioxidant marker values. Antioxidant potential in bioaccessible fractions was mainly related to the content of coenzyme Q10 and phenolic compounds in EVOO. Chemometric analysis showed that the oils were clearly classified by cultivars, harvest and crop stage, according to the chemical composition and antioxidant activity analyzed in the present study.


Sign in / Sign up

Export Citation Format

Share Document