scholarly journals Determination of pesticide residues by chromatographic methods for food safety

2021 ◽  
Vol 12 (3) ◽  
pp. 111-118
Author(s):  
N. Yu. Tereshchenko ◽  
◽  
O. Yu. Kursenko ◽  
O. I. Khyzhan ◽  
O. I. Khyzhan ◽  
...  

The paper presents the methodology of preparation of samples of oilseeds, lettuce, apples for research by chromatographic control of xenobiotics of the following chemical groups of pesticides: benzimidazole derivatives, anilinopyrimidine derivatives, bipyridylium derivatives. The implementation of the following processes is considered: homogenization of the sample, purification of the extract by solid-phase or liquid-liquid extraction, obtaining a plant extract, obtaining an extract of analytes. For fine-grained homogenized samples of sunflower seeds, the optimal ratio of raw material -extragent is 1:20, for pasty homogenized samples of apple fruit - 1:10, for liquid samples of homogenized lettuce - 1: 5. Analysis of the distribution of xenobiotics in the system octane/water, the dipole moment of solvents allowed to determine the extractants that are able to dissolve and remove xenobiotics from raw materials. It was found that a mixture of acetonitrile and methanol (4: 1) should be used to remove benzimidazole derivatives and anilinopyrimidine derivatives, bipyridylium derivatives are best extracted with methanolic trifluoroacetic acid (9.5: 0.5). Quantitative analysis of xenobiotics content in extracts obtained from samples artificially enriched with xenobiotics was performed. The most complete xenobiotics were removed from samples of plant products containing traces of fat. The most difficult process of sample preparation is the process of obtaining sunflower seed extract. The content of xenobiotics in extracts obtained from samples artificially enriched in analytes is influenced by the temperature at which the process takes place and the duration of extraction. Based on the chemical composition of the sample matrix and the list of analytes, the conditions of the variable component of the methodology are proposed: obtaining plant extract under the action of selective solvents, homogenized raw material-solvent with constant stirring of the extraction system at 180-200 rpm, or under the action of ultrasonic vibrations with a frequency of 37 kHz from 4°C to 25°C for 5-25 minutes. The control of the qualitative and quantitative composition of the studied plant extracts and analyte extracts was investigated by the methods of high-performance liquid and gas chromatography (liquid and gas) with mass-selective detectors.

2021 ◽  
pp. 301-308
Author(s):  
Olesya Nikolayevna Mazko ◽  
Lyudmila Ivanovna Tikhomirova ◽  
Lyudmila Vladimirovna Shcherbakova ◽  
Natal'ya Grigor'yevna Bazarnova ◽  
Dmitriy Alekseyevich Karpitsky

The aim of this study was to evaluate the effect of 6-benzylaminopurine (BAP) separately and in interaction with auxins on the change in the qualitative and quantitative composition of flavonoids in the raw materials of regenerating plants Iris sibirica L. Cambridge grade in comparison with aeroponic and intact raw materials using the method of high-performance liquid chromatography. Raw materials of I. sibirica Cambridge variety obtained in vitro culture had a richer qualitative composition of flavonoids than intact plants. The dependence of the accumulation of flavonoids on the concentration of 6-benzylaminopurine in nutrient media was noted. The presence of 13 compounds was observed in extracts of 70% ethyl alcohol from regenerating plants grown at the lowest concentration of BAP (1.0 µM) within the experiment. In quantitative terms, the flavonoid apigenin was maximally determined on a medium with BAP 1 µM, and kaempferol - on media with BAP 5.0 µM, supplemented with auxins. For a medium with 7.5 µM BAP, the lowest variety of compounds was observed (9) and the lowest kaempferol content. Auxins influenced the synthesis of flavonoids. The amount of flavonoids in all variants of the experiment increased by an average of 13% in the presence of auxins. The stages of the technological process of obtaining raw materials I. sibirica Cambridge variety on the basis of clonal micropropagation and cultivation in aeroponics conditions allowed to obtain raw materials that do not contain heavy and toxic metals, are not infected with pathogens and pests. With 1 m2 of useful area of aeroponics for 1 year, it is possible to collect 5 times more raw materials than with field cultivation. According to the qualitative composition of phenolic compounds, aeroponic raw materials are identical to intact plants.


2020 ◽  
pp. 405-414
Author(s):  
Veronika Valentinovna Tarnopol’skaya ◽  
Tat'yana Vasil'yevna Ryazanova ◽  
Natal'ya Yur'yevna Demidenko ◽  
Oksana Nikolayevna Eryomenko

A technology for pilot production of feed products via microbiological conversion of plant raw materials (mixed substrate of pine sawdust and vegetative part of Jerusalem artichoke) by Plerotus ostreatus PO-4.1 and Pleurotus djamor PD-3.2 strains is developed. The technology includes hydrodynamic activation of substrate at the seed stock production stage. The overall technology includes three key stages: submerged fermentation of pure cultures of production strains; submerged-solid phase fermentation of hydrodynamicly activated plant raw materials for seed stock production; solid-state fermentation of mechanically ground plant substrate for feed products production. A successful approbation of submerged-solid state fermentation of production strains on media containing 3% of hydrodynamicly activated raw materials allowed for obtaining seed stock with 14.5 g/l yield of submerged mycelium biomass fully adopted for this type of substrate. Further use of this seed stock biomass at the solid state fermentation stage makes the overall process duration three times shorter compared to existing technologies for direct wood waste bioconversion. The pilot plant results show valuable practicability of plant raw material hydrodynamic activation with the purpose of enhancing its bioaccessibility with consequent increase in degree of microbiological conversion. The product of bioconversion contains 14–16% of protein, biofiber, vitamins and minerals and could be considered for successful use as feed by agricultural enterprises.


2009 ◽  
Vol 92 (4) ◽  
pp. 1016-1020 ◽  
Author(s):  
Sohan S Chitlange ◽  
Prajakta S Kulkarni ◽  
Dada Patil ◽  
Bhushan Patwardhan ◽  
Rabindra K Nanda

Abstract Because Ayurvedic herbal preparations contain a myriad of compounds in complex matrixes, it is difficult to establish quality control standards for raw materials and to standardize finished Ayurvedic drugs. A novel, accurate, and valid fingerprint method was developed using HPLC for quality control of a traditional Ayurvedic Arjuna churna formulation, which is used as a cardiotonic drug. Comprehensive comparison of chromatograms of standardized formulation of Arjuna churna and marketed formulations revealed eight characteristic peaks in chromatograms, which unambiguously confirmed the presence of authentic raw material used in the formulation on the basis of their retention time values and UV data. An HPLC fingerprint was also developed for total sapogenins present in Terminalia arjuna. The six common peaks observed in chromatograms of isolated sapogenins, standardized formulations, and marketed formulations can serve as a quality control tool for qualitative estimation of total saponin glycosides present in an Arjuna churna formulation.


2019 ◽  
Vol 814 ◽  
pp. 413-418
Author(s):  
Fang Wang ◽  
Ming Han Xu ◽  
Rui Hua Wang ◽  
Chao Yang ◽  
Ai Xia Chen ◽  
...  

The construction industry continues to develop and the requirements for cement performance are getting higher and higher. At the same time, in the steel industry, the discharge of steel slag is also increasing. The effective reuse of steel slag has become a prominent problem in the steel industry. . Therefore, it is envisaged to use steel slag as a raw material for the cement production process to produce cement and to produce high-performance cement. The main raw materials of this experiment are steel slag, limestone, sandstone and shale. Through the cement preparation process, the cement is made, and then the cement is made into concrete to test its performance. This experiment mainly studies the sintering temperature and holding time variable. In the experimental test, the analysis and comparison were carried out in five aspects of the degree of macroscopic cracking, particle size, density, microstructure and composition. In the comparison experiment of sintering temperature, with the increase of temperature, the flexural and compressive properties of cement gradually increased. In this test, 1200 °C is the most suitable temperature for the performance of the cement. Through the experimental comparison of different holding time, it is known that with the prolonging of the holding time, the microstructure and actual performance of the cement are continuously enhanced. Comprehensive consideration: the ratio of steel slag in cement ratio is 10%, sintering temperature is 1200 °C, and heat preservation is 2h. The steel slag cement prepared under this condition has the strongest performance.


Author(s):  
I. Ivashchenko

High-performance liquid chromatography method has been used to evaluate qualitative and quantitative composition of certain phenolic compounds obtained from areal parts of Artemisia dracunculus L. introduced in Zhytomyr Polissya. 31 phenolic compounds have been detected, among which the following flavonoids were identified: rutin (1.30±0.04 mg/g), luteolin-7-glycoside (0.34±0.03), apigenin-7-glycoside (0.30±0.01) and isochlorogenic acid (0.16± 0.02 mg/g), where rutin was the dominant component. The total amount of phenolic compounds in air-dried raw material constituted 51.24±0.12 mg/g (5.12%). The employed chromatography analysis of phenolic compounds from Artemisia dracunculus areal parts shows that the plant may be considered as a valuable source of biologically active compounds of phenolic origin. Phenolic compounds are likely to determine the antimicrobial properties of the plant, established earlier. Further in-depth study and cultivation of Artemisia dracunculus in Zhytomyr Polissya have a great potential for pharmaceutical and food industries, cosmetics and development of therapeutic antioxidant diets.


2021 ◽  
Vol 22 (6) ◽  
pp. 896-906
Author(s):  
N. R. Andreev ◽  
V. G. Goldstein ◽  
V. A. Kovalenok ◽  
L. P. Nosovskaya ◽  
L. V. Adikaeva ◽  
...  

The article provides an overview of the current state of the application of solid-phase methods for separating the structure of grain and leguminous raw material into constituent components, as one of the most relevant areas of environmental protection and reducing the amount of wastewater from enterprises processing agricultural raw materials. The main direction of research on the production of protein concentrates from leguminous raw materials (peas, beans, chickpeas, lupine) by the method of air classification is noted. Among grain crops, rye stands out as having a more balanced amino acid composition compared to wheat and the largest starch grains up to 60 microns, which improves the aero-dynamic separation of grain flour into protein and starch fractions. Тherefore, rye flour was the object of research in this work. The research area included the development of a method for determining the starch content in the heavy fraction of rye flour from the yield of its light protein fraction and its starch content using an installation with variable parameters of a two-chamber disperser and a vortex classifier. The results of experiments on the separation of the mass of the initial rye flour into heavy starch and light protein fractions with a given ratio of starch and protein are theoretically justified and experimentally confirmed. The dependences of the starch content in the heavy fraction on the number of cycles of its recycling are established. With variable parameters of grinding rye flour, determined by the speed of the working bodies of the dispersant from 70 to 100 m/s, the time of grinding and recirculation of the heavy fraction of 30 s and the tangential speed of the classifier rotor of 15 m/s, stable results were obtained for the separation of starch and protein. Тhe yield of the heavy fraction of 72 % with a starch content of 85 % and the yield of the light fraction of 28 % with a mass fraction of protein of at least 26 %.


2020 ◽  
Vol 10 (18) ◽  
pp. 6222 ◽  
Author(s):  
Girts Bumanis ◽  
Jelizaveta Zorica ◽  
Diana Bajare

The potential of phosphogypsum (PG) as secondary raw material in construction industry is high if compared to other raw materials from the point of view of availability, total energy consumption, and CO2 emissions created during material processing. This work investigates a green hydraulic ternary system binder based on waste phosphogypsum (PG) for the development of sustainable high-performance construction materials. Moreover, a simple, reproducible, and low-cost manufacture is followed by reaching PG utilization up to 50 wt.% of the binder. Commercial gypsum plaster was used for comparison. High-performance binder was obtained and on a basis of it foamed lightweight material was developed. Low water-binder ratio mixture compositions were prepared. Binder paste, mortar, and foamed binder were used for sample preparation. Chemical, mineralogical composition and performance of the binder were evaluated. Results indicate that the used waste may be successfully employed to produce high-performance binder pastes and even mortars with a compression strength up to 90 MPa. With the use of foaming agent, lightweight (370–700 kg/m3) foam concrete was produced with a thermal conductivity from 0.086 to 0.153 W/mK. Water tightness (softening coefficient) of such foamed material was 0.5–0.64. Proposed approach represents a viable solution to reduce the environmental footprint associated with waste disposal.


2011 ◽  
Vol 94 (5) ◽  
pp. 1400-1410 ◽  
Author(s):  
Paula N Brown ◽  
Michael Chan ◽  
Lori Paley ◽  
Joseph M Betz

Abstract A method previously validated to determine caftaric acid, chlorogenic acid, cynarin, echinacoside, and cichoric acid in echinacea raw materials has been successfully applied to dry extract and liquid tincture products in response to North American consumer needs. Single-laboratory validation was used to assess the repeatability, accuracy, selectivity, LOD, LOQ, analyte stability (ruggedness), and linearity of the method, with emphasis on finished products. Repeatability precision for each phenolic compound was between 1.04 and 5.65% RSD, with HorRat values between 0.30 and 1.39 for raw and dry extract finished products. HorRat values for tinctures were between 0.09 and 1.10. Accuracy of the method was determined through spike recovery studies. Recovery of each compound from raw material negative control (ginseng) was between 90 and 114%, while recovery from the finished product negative control (maltodextrin and magnesium stearate) was between 97 and 103%. A study was conducted to determine if cichoric acid, a major phenolic component of Echinacea purpurea (L.) Moench and E. angustifolia DC, degrades during sample preparation (extraction) and HPLC analysis. No significant degradation was observed over an extended testing period using the validated method.


The technology of production of a biologically active phytocomplex in the form of a biologically active additive has been discussed. The qualitative and quantitative composition of the formulation, which forms the functional properties of a specialized product, has scientifically been determined. The main stages of production include the preparation and input control of the raw material, the preparation of a mixture for encapsulation, including the steps of dispensing, sieving, grinding and mixing at a rate of 100 kg / 1 h, encapsulation and deducting, packaging, packaging and storage. A description of the technology of ex-traction of plant raw materials has been given, which is of great importance in the formation of consumer properties of the product being developed. The extraction process includes: obtaining liquid recovery us-ing demineralized water with dissolved in it sodium bicarbonate in an amount of 8% of the dry feed con-tent. The extractant-raw ratio is 1:13, the extraction time is 4 hours for each time; thickening of the liquid extract. It is carried out by means of vacuum in a vacuum evaporator plant before obtaining an extract with a solids content of not less than 20%; obtaining a dry extract. It is carried out by spray drying at a temperature of 90-95 ° C. The advantage of the developed technology of dietary supplements is the possi-bility of combining several differently directed biologically active substances in one capsule. The gelati-nous membrane reliably protects the contents from various environmental factors. Functional properties of the formulation formula of a specialized product are aimed at the prevention and comprehensive treatment of infectious viral diseases, confirmed by the conclusion of experts from the Russian Federal Service for Consumer Rights and Consumer Protection and the results of clinical trials in a group of pa-tients with acute respiratory viral infections. The developed product has been approved and produced at the enterprises of the company «Art Life».


2020 ◽  
pp. 8-14
Author(s):  
E. A. Shoshin ◽  
◽  
V. V. Strokova ◽  

The article presents a study to establish the possibility of obtaining polymodal silicate dispersions (SCD) based on common natural silicacontaining raw materials (gaize) and of using such dispersions as fillers and additives for cement compositions and assesses their effectiveness. Gaize, construction quicklime, and sucrose were used as modifying carbohydrates and silica-containing raw materials for the mechanochemical synthesis. The SCD technology includes the stages of raw material dosing, combination, and wet grinding in a ball mill, separation of the solid phase of the suspension by filtration (in drum or pressure filters) and its thermolysis in a thermolysis chamber, followed by short-term dry grinding of the thermolysis products in batch or continuous mills. The results are presented for the analysis of silicate-calcium dispersions with various ratios of the initial components. The efficiency of using SCD as a component in a composite binder or a finely dispersed mineral additive in cement-sand composites is demonstrated, which introduces mechanochemical synthesis of calcium silicates as a promising technology for processing gaize into effective fillers and additives for construction purposes. The study was carried out under the grant issued by the Russian Science Foundation (project No. 19-19-00263).


Sign in / Sign up

Export Citation Format

Share Document