scholarly journals Subsidence Evolution of the Firenze–Prato–Pistoia Plain (Central Italy) Combining PSI and GNSS Data

2018 ◽  
Vol 10 (7) ◽  
pp. 1146 ◽  
Author(s):  
Matteo Del Soldato ◽  
Gregorio Farolfi ◽  
Ascanio Rosi ◽  
Federico Raspini ◽  
Nicola Casagli

Subsidence phenomena, as well as landslides and floods, are one of the main geohazards affecting the Tuscany region (central Italy). The monitoring of related ground deformations plays a key role in their management to avoid problems for buildings and infrastructure. In this scenario, Earth observation offers a better solution in terms of costs and benefits than traditional techniques (e.g., GNSS (Global Navigation Satellite System) or levelling networks), especially for wide area applications. In this work, the subsidence-related ground motions in the Firenze–Prato–Pistoia plain were back-investigated to track the evolution of displacement from 2003 to 2017 by means of multi-interferometric analysis of ENVISAT and Sentinel-1 imagery combined with GNSS data. The resulting vertical deformation velocities are aligned to the European Terrestrial Reference System 89 (ETRS89) datum and can be considered real velocity of displacement. The vertical ground deformation maps derived by ENVISAT and Sentinel-1 data, corrected with the GNSS, show how the area affected by subsidence for the period 2003–2010 and the period 2014–2017 evolved. The differences between the two datasets in terms of the extension and velocity values were analysed and then associated with the geological setting of the basin and external factors, e.g., new greenhouses and nurseries. This analysis allowed for reconstructing the evolution of the subsidence for the area of interest showing an increment of ground deformation in the historic centre of Pistoia Town, a decrement of subsidence in the nursery area between Pistoia and Prato cities, and changes in the industrial sector close to Prato.

2017 ◽  
Vol 11 (2) ◽  
pp. 827-840 ◽  
Author(s):  
Luc Girod ◽  
Christopher Nuth ◽  
Andreas Kääb ◽  
Bernd Etzelmüller ◽  
Jack Kohler

Abstract. Acquiring data to analyse change in topography is often a costly endeavour requiring either extensive, potentially risky, fieldwork and/or expensive equipment or commercial data. Bringing the cost down while keeping the precision and accuracy has been a focus in geoscience in recent years. Structure from motion (SfM) photogrammetric techniques are emerging as powerful tools for surveying, with modern algorithm and large computing power allowing for the production of accurate and detailed data from low-cost, informal surveys. The high spatial and temporal resolution permits the monitoring of geomorphological features undergoing relatively rapid change, such as glaciers, moraines, or landslides. We present a method that takes advantage of light-transport flights conducting other missions to opportunistically collect imagery for geomorphological analysis. We test and validate an approach in which we attach a consumer-grade camera and a simple code-based Global Navigation Satellite System (GNSS) receiver to a helicopter to collect data when the flight path covers an area of interest. Our method is based and builds upon Welty et al. (2013), showing the ability to link GNSS data to images without a complex physical or electronic link, even with imprecise camera clocks and irregular time lapses. As a proof of concept, we conducted two test surveys, in September 2014 and 2015, over the glacier Midtre Lovénbreen and its forefield, in northwestern Svalbard. We were able to derive elevation change estimates comparable to in situ mass balance stake measurements. The accuracy and precision of our DEMs allow detection and analysis of a number of processes in the proglacial area, including the presence of thermokarst and the evolution of water channels.


2021 ◽  
Vol 13 (9) ◽  
pp. 1665
Author(s):  
Vassilis Sakkas

Modelling of combined Global Navigation Satellite System (GNSS) and Interferometric Synthetic Aperture Radar (InSAR) data was performed to characterize the source of the Mw6.9 earthquake that occurred to the north of Samos Island (Aegean Sea) on 30 October 2020. Pre-seismic analysis revealed an NNE–SSW extensional regime with normal faults along an E–W direction. Co-seismic analysis showed opening of the epicentral region with horizontal and vertical displacements of ~350 mm and ~90 mm, respectively. Line-of-sight (LOS) interferometric vectors were geodetically corrected using the GNSS data and decomposed into E–W and vertical displacement components. Compiled interferometric maps reveal that relatively large ground displacements had occurred in the western part of Samos but had attenuated towards the eastern and southern parts. Alternating motions occurred along and across the main geotectonic units of the island. The best-fit fault model has a two-segment listric fault plane (average slip 1.76 m) of normal type that lies adjacent to the northern coastline of Samos. This fault plane is 35 km long, extends to 15 km depth, and dips to the north at 60° and 40° angles for the upper and lower parts, respectively. A predominant dip-slip component and a substantial lateral one were modelled.


2013 ◽  
Vol 805-806 ◽  
pp. 851-854
Author(s):  
Zhi Ge Jia ◽  
Zhao Sheng Nie ◽  
Wei Wang ◽  
Xiao Guan ◽  
Di Jin Wang

This work describes the field testing process of Global Navigation Satellite System (GNSS) receiver under 220KV, 500KV UHV transmission line and standard calibration field. Analysis for GNSS data results shows that the radio interference generated by EHV transmission lines have no effect on GNSS receiver internal noise levels and valid GNSS observation rate. Within 50 meters of the EHV transmission lines, the multi-path effects (mp1 and mp2 value) significantly exceeded the normal range and becomes larger with the increase of the voltage .outside 50 meters of the EHV transmission line, the multi-path effects have almost no effect on the high-precision GNSS observations.


2020 ◽  
Vol 10 (18) ◽  
pp. 6445 ◽  
Author(s):  
Theodoros Gatsios ◽  
Francesca Cigna ◽  
Deodato Tapete ◽  
Vassilis Sakkas ◽  
Kyriaki Pavlou ◽  
...  

The Methana volcano in Greece belongs to the western part of the Hellenic Volcanic Arc, where the African and Eurasian tectonic plates converge at a rate of approximately 3 cm/year. While volcanic hazard in Methana is considered low, the neotectonic basin constituting the Saronic Gulf area is seismically active and there is evidence of local geothermal activity. Monitoring is therefore crucial to characterize any activity at the volcano that could impact the local population. This study aims to detect surface deformation in the whole Methana peninsula based on a long stack of 99 Sentinel-1 C-band Synthetic Aperture Radar (SAR) images in interferometric wide swath mode acquired in March 2015–August 2019. A Multi-Temporal Interferometric SAR (MT-InSAR) processing approach is exploited using the Interferometric Point Target Analysis (IPTA) method, involving the extraction of a network of targets including both Persistent Scatterers (PS) and Distributed Scatterers (DS) to augment the monitoring capability across the varied land cover of the peninsula. Satellite geodetic data from 2006–2019 Global Positioning System (GPS) benchmark surveying are used to calibrate and validate the MT-InSAR results. Deformation monitoring records from permanent Global Navigation Satellite System (GNSS) stations, two of which were installed within the peninsula in 2004 (METH) and 2019 (MTNA), are also exploited for interpretation of the regional deformation scenario. Geological, topographic, and 2006–2019 seismological data enable better understanding of the ground deformation observed. Line-of-sight displacement velocities of the over 4700 PS and 6200 DS within the peninsula are from −18.1 to +7.5 mm/year. The MT-InSAR data suggest a complex displacement pattern across the volcano edifice, including local-scale land surface processes. In Methana town, ground stability is found on volcanoclasts and limestone for the majority of the urban area footprint while some deformation is observed in the suburban zones. At the Mavri Petra andesitic dome, time series of the exceptionally dense PS/DS network across blocks of agglomerate and cinder reveal seasonal fluctuation (5 mm amplitude) overlapping the long-term stable trend. Given the steepness of the slopes along the eastern flank of the volcano, displacement patterns may indicate mass movements. The GNSS, seismological and MT-InSAR analyses lead to a first account of deformation processes and their temporal evolution over the last years for Methana, thus providing initial information to feed into the volcano baseline hazard assessment and monitoring system.


2017 ◽  
Vol 17 (11) ◽  
pp. 1885-1892 ◽  
Author(s):  
Giorgio De Guidi ◽  
Alessia Vecchio ◽  
Fabio Brighenti ◽  
Riccardo Caputo ◽  
Francesco Carnemolla ◽  
...  

Abstract. On 24 August 2016 a strong earthquake (Mw = 6.0) affected central Italy and an intense seismic sequence started. Field observations, DInSAR (Differential INterferometry Synthetic-Aperture Radar) analyses and preliminary focal mechanisms, as well as the distribution of aftershocks, suggested the reactivation of the northern sector of the Laga fault, the southern part of which was already rebooted during the 2009 L'Aquila sequence, and of the southern segment of the Mt Vettore fault system (MVFS). Based on this preliminary information and following the stress-triggering concept (Stein, 1999; Steacy et al., 2005), we tentatively identified a potential fault zone that is very vulnerable to future seismic events just north of the earlier epicentral area. Accordingly, we planned a local geodetic network consisting of five new GNSS (Global Navigation Satellite System) stations located a few kilometres away from both sides of the MVFS. This network was devoted to working out, at least partially but in some detail, the possible northward propagation of the crustal network ruptures. The building of the stations and a first set of measurements were carried out during a first campaign (30 September and 2 October 2016). On 26 October 2016, immediately north of the epicentral area of the 24 August event, another earthquake (Mw = 5.9) occurred, followed 4 days later (30 October) by the main shock (Mw = 6.5) of the whole 2016 summer–autumn seismic sequence. Our local geodetic network was fully affected by the new events and therefore we performed a second campaign soon after (11–13 November 2016). In this brief note, we provide the results of our geodetic measurements that registered the co-seismic and immediately post-seismic deformation of the two major October shocks, documenting in some detail the surface deformation close to the fault trace. We also compare our results with the available surface deformation field of the broader area, obtained on the basis of the DInSAR technique, and show an overall good fit.


2020 ◽  
Vol 12 (3) ◽  
pp. 411 ◽  
Author(s):  
Sangeetha Shankar ◽  
Michael Roth ◽  
Lucas Andreas Schubert ◽  
Judith Anne Verstegen

Up-to-date geodatasets on railway infrastructure are valuable resources for the field of transportation. This paper investigates three methods for mapping the center lines of railway tracks using heterogeneous sensor data: (i) conditional selection of satellite navigation (GNSS) data, (ii) a combination of inertial measurements (IMU data) and GNSS data in a Kalman filtering and smoothing framework and (iii) extraction of center lines from laser scanner data. Several combinations of the methods are compared with a focus on mapping in tree-covered areas. The center lines of the railway tracks are extracted by applying these methods to a test dataset collected by a road-rail vehicle. The guard rails in the test area were also extracted during the center line detection process. The combination of methods (i) and (ii) gave the best result for the track on which the measurement vehicle had moved, mapping almost 100% of the track. The combination of methods (ii) and (iii) and the combination of all three methods gave the best result for the other parallel tracks, mapping between 25% and 80%. The mean perpendicular distance of the mapped center lines from the reference data was 1.49 meters.


2020 ◽  
Vol 12 (16) ◽  
pp. 2566
Author(s):  
Joaquín Escayo ◽  
José Fernández ◽  
Juan F. Prieto ◽  
Antonio G. Camacho ◽  
Mimmo Palano ◽  
...  

La Palma is one of the youngest of the Canary Islands, and historically the most active. The recent activity and unrest in the archipelago, the moderate seismicity observed in 2017 and 2018 and the possibility of catastrophic landslides related to the Cumbre Vieja volcano have made it strongly advisable to ensure a realistic knowledge of the background surface deformation on the island. This will then allow any anomalous deformation related to potential volcanic unrest on the island to be detected by monitoring the surface deformation. We describe here the observation results obtained during the 2006–2010 period using geodetic techniques such as Global Navigation Satellite System (GNSS), Advanced Differential Synthetic Aperture Radar Interferometry (A-DInSAR) and microgravimetry. These results show that, although there are no significant associated variations in gravity, there is a clear surface deformation that is spatially and temporally variable. Our results are discussed from the point of view of the unrest and its implications for the definition of an operational geodetic monitoring system for the island.


2017 ◽  
Vol 71 (1) ◽  
pp. 134-150
Author(s):  
Haiying Liu ◽  
Lei Xu ◽  
Xiaolin Meng ◽  
Xibei Chen ◽  
Junyi Li

Global Navigation Satellite System (GNSS) attitude determination and positioning play an important role in many navigation applications. However, the two GNSS-based problems are usually treated separately. This ignores the constraint information of the GNSS antenna array and the accuracy is limited. To improve the performance of navigation, an integrated attitude and position determination method based on an affine constraint model is presented. In the first part, the GNSS array model and affine constrained attitude determination method are compared with the unconstrained methods. Then the integrated attitude and position determination method is presented. The performance of the proposed method is tested with a series of static data and dynamic experimental GNSS data. The results show that the proposed method can improve the success rate of ambiguity resolution to further improve the accuracy of attitude determination and relative positioning compared to the unconstrained methods.


2018 ◽  
Vol 106 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Marcelo Romero ◽  
Mike Mustafa Berber

Abstract Twenty four hour GNSS (Global Navigation Satellite System) data acquired monthly for 5 years from 8 CORS (Continuously Operating Reference Station) stations in Central Valley, California are processed and vertical velocities of the points are determined. To process GNSS data, online GNSS data processing service APPS (Automatic Precise Positioning Service) is used. GNSS data downloaded from NGS (National Geodetic Survey) CORS are analyzed and subsidence at these points is portrayed with graphics. It is revealed that elevation changes range from 5 mm uplift in the north to 163 mm subsidence in the southern part of the valley.


2020 ◽  
Vol 223 (1) ◽  
pp. 22-44 ◽  
Author(s):  
Anne Lemoine ◽  
Pierre Briole ◽  
Didier Bertil ◽  
Agathe Roullé ◽  
Michael Foumelis ◽  
...  

SUMMARY On 10 May 2018, an unprecedented long and intense seismic crisis started offshore, east of Mayotte, the easternmost of the Comoros volcanic islands. The population felt hundreds of events. Over the course of 1 yr, 32 earthquakes with magnitude greater than 5 occurred, including the largest event ever recorded in the Comoros (Mw = 5.9 on 15 May 2018). Earthquakes are clustered in space and time. Unusual intense long lasting monochromatic very long period events were also registered. From early July 2018, Global Navigation Satellite System (GNSS) stations and Interferometric Synthetic Aperture Radar (InSAR) registered a large drift, testimony of a large offshore deflation. We describe the onset and the evolution of a large magmatic event thanks to the analysis of the seismicity from the initiation of the crisis through its first year, compared to the ground deformation observation (GNSS and InSAR) and modelling. We discriminate and characterize the initial fracturing phase, the phase of magma intrusion and dyke propagation from depth to the subsurface, and the eruptive phase that starts on 3 July 2018, around 50 d after the first seismic events. The eruption is not terminated 2 yr after its initiation, with the persistence of an unusual seismicity, whose pattern has been similar since summer 2018, including episodic very low frequency events presenting a harmonic oscillation with a period of ∼16 s. From July 2018, the whole Mayotte Island drifted eastward and downward at a slightly increasing rate until reaching a peak in late 2018. At the apex, the mean deformation rate was 224 mm yr−1 eastward and 186 mm yr−1 downward. During 2019, the deformation smoothly decreased and in January 2020, it was less than 20 per cent of its peak value. A deflation model of a magma reservoir buried in a homogenous half space fits well the data. The modelled reservoir is located 45 ± 5 km east of Mayotte, at a depth of 28 ± 3 km and the inferred magma extraction at the apex was ∼94 m3 s−1. The introduction of a small secondary source located beneath Mayotte Island at the same depth as the main one improves the fit by 20 per cent. While the rate of the main source drops by a factor of 5 during 2019, the rate of the secondary source remains stable. This might be a clue of the occurrence of relaxation at depth that may continue for some time after the end of the eruption. According to our model, the total volume extracted from the deep reservoir was ∼2.65 km3 in January 2020. This is the largest offshore volcanic event ever quantitatively documented. This seismo-volcanic crisis is consistent with the trans-tensional regime along Comoros archipelago.


Sign in / Sign up

Export Citation Format

Share Document