scholarly journals The 2018–2019 seismo-volcanic crisis east of Mayotte, Comoros islands: seismicity and ground deformation markers of an exceptional submarine eruption

2020 ◽  
Vol 223 (1) ◽  
pp. 22-44 ◽  
Author(s):  
Anne Lemoine ◽  
Pierre Briole ◽  
Didier Bertil ◽  
Agathe Roullé ◽  
Michael Foumelis ◽  
...  

SUMMARY On 10 May 2018, an unprecedented long and intense seismic crisis started offshore, east of Mayotte, the easternmost of the Comoros volcanic islands. The population felt hundreds of events. Over the course of 1 yr, 32 earthquakes with magnitude greater than 5 occurred, including the largest event ever recorded in the Comoros (Mw = 5.9 on 15 May 2018). Earthquakes are clustered in space and time. Unusual intense long lasting monochromatic very long period events were also registered. From early July 2018, Global Navigation Satellite System (GNSS) stations and Interferometric Synthetic Aperture Radar (InSAR) registered a large drift, testimony of a large offshore deflation. We describe the onset and the evolution of a large magmatic event thanks to the analysis of the seismicity from the initiation of the crisis through its first year, compared to the ground deformation observation (GNSS and InSAR) and modelling. We discriminate and characterize the initial fracturing phase, the phase of magma intrusion and dyke propagation from depth to the subsurface, and the eruptive phase that starts on 3 July 2018, around 50 d after the first seismic events. The eruption is not terminated 2 yr after its initiation, with the persistence of an unusual seismicity, whose pattern has been similar since summer 2018, including episodic very low frequency events presenting a harmonic oscillation with a period of ∼16 s. From July 2018, the whole Mayotte Island drifted eastward and downward at a slightly increasing rate until reaching a peak in late 2018. At the apex, the mean deformation rate was 224 mm yr−1 eastward and 186 mm yr−1 downward. During 2019, the deformation smoothly decreased and in January 2020, it was less than 20 per cent of its peak value. A deflation model of a magma reservoir buried in a homogenous half space fits well the data. The modelled reservoir is located 45 ± 5 km east of Mayotte, at a depth of 28 ± 3 km and the inferred magma extraction at the apex was ∼94 m3 s−1. The introduction of a small secondary source located beneath Mayotte Island at the same depth as the main one improves the fit by 20 per cent. While the rate of the main source drops by a factor of 5 during 2019, the rate of the secondary source remains stable. This might be a clue of the occurrence of relaxation at depth that may continue for some time after the end of the eruption. According to our model, the total volume extracted from the deep reservoir was ∼2.65 km3 in January 2020. This is the largest offshore volcanic event ever quantitatively documented. This seismo-volcanic crisis is consistent with the trans-tensional regime along Comoros archipelago.

2018 ◽  
Vol 13 (3) ◽  
pp. 518-525 ◽  
Author(s):  
Masato Iguchi ◽  

A dense Global Navigation Satellite System (GNSS) network has been deployed at Sakurajima volcano since 1995 and extends to the surrounding area of the Aira caldera. The ground deformation obtained by GNSS observation corresponds to transient eruptive activity of Sakurajima volcano, which has produced frequent vulcanian eruptions since 1955. Inflation of the volcano was detected prior to the increase in vulcanian eruptions in 1999, and resumption of the eruptions at the Showa crater. Magma intrusion events and an increase in eruptions in late 2009, late 2011, and early 2015 suggest the existence of an open-conduit system from the Aira caldera to the vents at the summit area of the Minamidake cone, through the sub reservoir beneath the older Kitadake cone. Ground deformation induced by sudden dike intrusion is different from that of previous intrusions, as revealed by the dense GNSS network. GNSS data are useful in evaluating and forecasting volcanic activity, and are available to grasp the advection and diffusion of volcanic ash.


2020 ◽  
Vol 10 (18) ◽  
pp. 6445 ◽  
Author(s):  
Theodoros Gatsios ◽  
Francesca Cigna ◽  
Deodato Tapete ◽  
Vassilis Sakkas ◽  
Kyriaki Pavlou ◽  
...  

The Methana volcano in Greece belongs to the western part of the Hellenic Volcanic Arc, where the African and Eurasian tectonic plates converge at a rate of approximately 3 cm/year. While volcanic hazard in Methana is considered low, the neotectonic basin constituting the Saronic Gulf area is seismically active and there is evidence of local geothermal activity. Monitoring is therefore crucial to characterize any activity at the volcano that could impact the local population. This study aims to detect surface deformation in the whole Methana peninsula based on a long stack of 99 Sentinel-1 C-band Synthetic Aperture Radar (SAR) images in interferometric wide swath mode acquired in March 2015–August 2019. A Multi-Temporal Interferometric SAR (MT-InSAR) processing approach is exploited using the Interferometric Point Target Analysis (IPTA) method, involving the extraction of a network of targets including both Persistent Scatterers (PS) and Distributed Scatterers (DS) to augment the monitoring capability across the varied land cover of the peninsula. Satellite geodetic data from 2006–2019 Global Positioning System (GPS) benchmark surveying are used to calibrate and validate the MT-InSAR results. Deformation monitoring records from permanent Global Navigation Satellite System (GNSS) stations, two of which were installed within the peninsula in 2004 (METH) and 2019 (MTNA), are also exploited for interpretation of the regional deformation scenario. Geological, topographic, and 2006–2019 seismological data enable better understanding of the ground deformation observed. Line-of-sight displacement velocities of the over 4700 PS and 6200 DS within the peninsula are from −18.1 to +7.5 mm/year. The MT-InSAR data suggest a complex displacement pattern across the volcano edifice, including local-scale land surface processes. In Methana town, ground stability is found on volcanoclasts and limestone for the majority of the urban area footprint while some deformation is observed in the suburban zones. At the Mavri Petra andesitic dome, time series of the exceptionally dense PS/DS network across blocks of agglomerate and cinder reveal seasonal fluctuation (5 mm amplitude) overlapping the long-term stable trend. Given the steepness of the slopes along the eastern flank of the volcano, displacement patterns may indicate mass movements. The GNSS, seismological and MT-InSAR analyses lead to a first account of deformation processes and their temporal evolution over the last years for Methana, thus providing initial information to feed into the volcano baseline hazard assessment and monitoring system.


2020 ◽  
Vol 7 (7) ◽  
pp. 200320 ◽  
Author(s):  
Bingkun Yu ◽  
Christopher J. Scott ◽  
Xianghui Xue ◽  
Xinan Yue ◽  
Xiankang Dou

The ionospheric sporadic E (Es) layer has a significant impact on the global positioning system (GPS)/global navigation satellite system (GNSS) signals. These influences on the GPS/GNSS signals can also be used to study the occurrence and characteristics of the Es layer on a global scale. In this paper, 5.8 million radio occultation (RO) profiles from the FORMOSAT-3/COSMIC satellite mission and ground-based observations of Es layers recorded by 25 ionospheric monitoring stations and held at the UK Solar System Data Centre at the Rutherford Appleton Laboratory and the Chinese Meridian Project were used to derive the hourly Es critical frequency ( f o Es) data. The global distribution of f o Es with a high spatial resolution shows a strong seasonal variation in f o Es with a summer maximum exceeding 4.0 MHz and a winter minimum between 2.0 and 2.5 MHz. The GPS/GNSS RO technique is an important tool that can provide global estimates of Es layers, augmenting the limited coverage and low-frequency detection threshold of ground-based instruments. Attention should be paid to small f o Es values from ionosondes near the instrumental detection limits corresponding to minimum frequencies in the range 1.28–1.60 MHz.


2020 ◽  
Vol 12 (18) ◽  
pp. 3001
Author(s):  
Boye Zhou ◽  
Christopher Watson ◽  
Benoit Legresy ◽  
Matt A. King ◽  
Jack Beardsley ◽  
...  

Global Navigation Satellite System (GNSS)-equipped buoys have a fundamental role in the validation of satellite altimetry. Requirements to validate next generation altimeter missions are demanding and call for a greater understanding of the systematic errors associated with the buoy approach. In this paper, we assess the present-day buoy precision using archived data from the Bass Strait validation facility. We explore potential improvements in buoy precision by addressing two previously ignored issues: changes to buoyancy as a function of external forcing, and biases induced by platform dynamics. Our results indicate the precision of our buoy against in situ mooring data is ~15 mm, with a ~8.5 mm systematic noise floor. Investigation into the tether tension effect on buoyancy showed strong correlation between currents, wind stress and buoy-against-mooring residuals. Our initial empirical correction achieved a reduction of 5 mm in the standard deviation of the residuals, with a 51% decrease in variance over low frequency bands. Corrections associated with platform orientation from an Inertial Navigation System (INS) unit showed centimetre-level magnitude and are expected to be higher under rougher sea states. Finally, we conclude with further possible improvements to meet validation requirements for the future Surface Water Ocean Topography (SWOT) mission.


2020 ◽  
Vol 12 (16) ◽  
pp. 2566
Author(s):  
Joaquín Escayo ◽  
José Fernández ◽  
Juan F. Prieto ◽  
Antonio G. Camacho ◽  
Mimmo Palano ◽  
...  

La Palma is one of the youngest of the Canary Islands, and historically the most active. The recent activity and unrest in the archipelago, the moderate seismicity observed in 2017 and 2018 and the possibility of catastrophic landslides related to the Cumbre Vieja volcano have made it strongly advisable to ensure a realistic knowledge of the background surface deformation on the island. This will then allow any anomalous deformation related to potential volcanic unrest on the island to be detected by monitoring the surface deformation. We describe here the observation results obtained during the 2006–2010 period using geodetic techniques such as Global Navigation Satellite System (GNSS), Advanced Differential Synthetic Aperture Radar Interferometry (A-DInSAR) and microgravimetry. These results show that, although there are no significant associated variations in gravity, there is a clear surface deformation that is spatially and temporally variable. Our results are discussed from the point of view of the unrest and its implications for the definition of an operational geodetic monitoring system for the island.


2019 ◽  
Vol 14 (5) ◽  
pp. 687-700 ◽  
Author(s):  
Taishi Yamada ◽  
Hideki Ueda ◽  
Toshiya Mori ◽  
Toshikazu Tanada ◽  
◽  
...  

Routine volcano monitoring increasingly involves multiparameter datasets. Databases that include multi-disciplinary datasets have great potential to contribute to the evaluation of ongoing volcanic eruptions and unrest events. Here, we examine the characteristics of a multiparameter dataset from Shinmoedake volcano (Kirishima) in Japan for the period of 2010–2018 to examine how the chronology of volcanic activity can be traced. Our dataset consists of global navigation satellite system (GNSS), seismic, tilt, infrasound, sulfur dioxide (SO2) column amount, and video records. We focus mainly on the period after 2012, particularly a series of ash emissions in 2017 (hereafter the 2017 eruption), lava effusion, and Vulcanian eruptions in 2018 (hereafter the 2018 eruption). Our dataset shows that the GNSS observations successfully captured the gradual inflation of the volcano edifice, suggesting magma intrusion or pressure buildup in the magma storage region prior to the 2017 and 2018 eruptions. The number of volcanic earthquakes also gradually increased from 2016 toward the eruptions, particularly events occurring beneath Shinmoedake. Tilt data captured a precursor tilt event prior to the 2017 eruption and a magma chamber deflation during the lava effusion of the 2018 eruption. Tilt, seismic, infrasound, SO2 gas column, and video data record signals accompanying periodic degassing during the lava effusion and explosive degassing accompanying the Vulcanian eruptions, which have similar characteristics to those reported for past eruptions at Shinmoedake and other volcanoes. This similarity suggests that multidisciplinary databases will be an important reference for future evaluations of ongoing volcanic activity and unrest.


2016 ◽  
Vol 40 (3) ◽  
pp. 347-355 ◽  
Author(s):  
José Paulo Molin ◽  
João Paulo Soto Veiga

ABSTRACT Sugarcane is a very important crop in Brazil, used as food production and biofuel, providing 18% of the total primary energy in the country. An important requirement to high yield is a good uniformity in the sugarcane field, which is impaired due to row gaps that appear since the first year of sugarcane crop caused by planting failures, harvesting damages, machinery traffic, pests, diseases and others. The aim of this study is to develop a system based on a photoelectric sensor to scan the field, georeferencing gaps representing them as a map. A data logger integrates the data from the photoelectric sensors, an encoder and a Global Navigation Satellite System (GNSS) and measures the distance between plants, defining the gaps. Tests under controlled conditions, using regular obstacles simulating stalks, showed errors between 0.02 and 0.03 m under speeds varying from 1.3 to 3.0 m s-1 and obstacles ranging from 0.1 to 1.0 m of gap. Results of tests performed at sugar cane rows were close to manual measurement. Field tests were performed using sampling plots of 6.0 x 6.0 m (four crop rows) along the area, on newly planted and on ratoon areas, showed a good relation with manual measurements. The raw data provides the length of the individual gaps or its local percentage and the interpolation among punctual gaps produces a map highlighting areas with low and high gap intensity as a useful tool in the sugarcane management for decision making for local or integral replanting.


2021 ◽  
Vol 13 (3) ◽  
pp. 452
Author(s):  
Xue Chen ◽  
Vladimiro Achilli ◽  
Massimo Fabris ◽  
Andrea Menin ◽  
Michele Monego ◽  
...  

Mass movements represent a serious threat to the stability of human structures and infrastructures, and cause loss of lives and severe damages to human properties every year worldwide. Built structures located on potentially unstable slopes are susceptible to deformations due to the displacement of the ground that at worst can lead to total destruction. Synthetic aperture radar (SAR) data acquired by Sentinel-1 satellites and processed by multi-temporal interferometric SAR (MT-InSAR) techniques can measure centimeter to millimeter-level displacement with weekly to monthly updates, characterizing long-term large-scale behavior of the buildings and slopes. However, the spatial resolution and short wavelength weaken the performance of Sentinel-1 in recognizing features (i.e., single buildings) inside image pixels and maintaining the coherence in mountainous vegetated areas. We have proposed and applied a methodology that combines Sentinel-1 interferometry with ground-based geomatics techniques, i.e., global navigation satellite system (GNSS), terrestrial laser scanning (TLS) and terrestrial structure from motion photogrammetry (SfM), for fully assessing building deformations on a slope located in the north-eastern Italian pre-Alps. GNSS allows verifying the ground deformation estimated by MT-InSAR and provides a reference system for the TLS and SfM measurements, while TLS and SfM allow the behavior of buildings located in the investigated slope to be monitored in great detail. The obtained results show that damaged buildings are located in the most unstable sectors of the slope, but there is no direct relationship between the rate of ground deformation of these sectors and the temporal evolution of damages to a single building, indicating that mass movements cause the displacement of blocks of buildings and each of them reacts differently according to its structural properties. This work shows the capability of MT-InSAR, GNSS, TLS and SfM in monitoring both buildings and geological processes that affect their stability, which plays a key role in geohazard analysis and assessment.


2018 ◽  
Vol 10 (7) ◽  
pp. 1146 ◽  
Author(s):  
Matteo Del Soldato ◽  
Gregorio Farolfi ◽  
Ascanio Rosi ◽  
Federico Raspini ◽  
Nicola Casagli

Subsidence phenomena, as well as landslides and floods, are one of the main geohazards affecting the Tuscany region (central Italy). The monitoring of related ground deformations plays a key role in their management to avoid problems for buildings and infrastructure. In this scenario, Earth observation offers a better solution in terms of costs and benefits than traditional techniques (e.g., GNSS (Global Navigation Satellite System) or levelling networks), especially for wide area applications. In this work, the subsidence-related ground motions in the Firenze–Prato–Pistoia plain were back-investigated to track the evolution of displacement from 2003 to 2017 by means of multi-interferometric analysis of ENVISAT and Sentinel-1 imagery combined with GNSS data. The resulting vertical deformation velocities are aligned to the European Terrestrial Reference System 89 (ETRS89) datum and can be considered real velocity of displacement. The vertical ground deformation maps derived by ENVISAT and Sentinel-1 data, corrected with the GNSS, show how the area affected by subsidence for the period 2003–2010 and the period 2014–2017 evolved. The differences between the two datasets in terms of the extension and velocity values were analysed and then associated with the geological setting of the basin and external factors, e.g., new greenhouses and nurseries. This analysis allowed for reconstructing the evolution of the subsidence for the area of interest showing an increment of ground deformation in the historic centre of Pistoia Town, a decrement of subsidence in the nursery area between Pistoia and Prato cities, and changes in the industrial sector close to Prato.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sibylle Vey ◽  
D. Al-Halbouni ◽  
M. Haghshenas Haghighi ◽  
F. Alshawaf ◽  
J. Vüllers ◽  
...  

AbstractMany studies show the sensitivity of our environment to manmade changes, especially the anthropogenic impact on atmospheric and hydrological processes. The effect on Solid Earth processes such as subsidence is less straightforward. Subsidence is usually slow and relates to the interplay of complex hydro-mechanical processes, thus making relations to atmospheric changes difficult to observe. In the Dead Sea (DS) region, however, climatic forcing is strong and over-use of fresh water is massive. An observation period of 3 years was thus sufficient to link the high evaporation (97 cm/year) and the subsequent drop of the Dead Sea lake level (− 110 cm/year), with high subsidence rates of the Earth’s surface (− 15 cm/year). Applying innovative Global Navigation Satellite System (GNSS) techniques, we are able to resolve this subsidence of the “Solid Earth” even on a monthly basis and show that it behaves synchronous to atmospheric and hydrological changes with a time lag of two months. We show that the amplitude and fluctuation period of ground deformation is related to poro-elastic hydro-mechanical soil response to lake level changes. This provides, to our knowledge, a first direct link between shore subsidence, lake-level drop and evaporation.


Sign in / Sign up

Export Citation Format

Share Document