scholarly journals Combination Analysis of Future Polar-Type Gravity Mission and GRACE Follow-On

2019 ◽  
Vol 11 (2) ◽  
pp. 200 ◽  
Author(s):  
Yufeng Nie ◽  
Yunzhong Shen ◽  
Qiujie Chen

Thanks to the unprecedented success of Gravity Recovery and Climate Experiment (GRACE), its successive mission GRACE Follow-On (GFO) has been in orbit since May 2018 to continue measuring the Earth’s mass transport. In order to possibly enhance GFO in terms of mass transport estimates, four orbit configurations of future polar-type gravity mission (FPG) (with the same payload accuracy and orbit parameters as GRACE, but differing in orbit inclination) are investigated by full-scale simulations in both standalone and jointly with GFO. The results demonstrate that the retrograde orbit modes used in FPG are generally superior to prograde in terms of gravity field estimation in the case of a joint GFO configuration. Considering the FPG’s independent capability, the orbit configurations with 89- and 91-degree inclinations (namely FPG-89 and FPG-91) are further analyzed by joint GFO monthly gravity field models over the period of one-year. Our analyses show that the FPG-91 basically outperforms the FPG-89 in mass change estimates, especially at the medium- and low-latitude regions. Compared to GFO & FPG-89, about 22% noise reduction over the ocean area and 17% over land areas are achieved by the GFO & FPG-91 combined model. Therefore, the FPG-91 is worthy to be recommended for the further orbit design of FPGs.

2021 ◽  
Author(s):  
Xingfu Zhang ◽  
Qiujie Chen ◽  
Yunzhong Shen

<p>      Although the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE FO) satellite missions play an important role in monitoring global mass changes within the Earth system, there is a data gap of about one year spanning July 2017 to May 2018, which leads to discontinuous gravity observations for monitoring global mass changes. As an alternative mission, the SWARM satellites can provide gravity observations to close this data gap. In this paper, we are dedicated to developing alternative monthly time-variable gravity field solutions from SWARM data. Using kinematic orbits of SWARM from ITSG for the period January 2015 to September 2020, we have generated a preliminary time series of monthly gravity field models named Tongji-Swarm2019 up to degree and order 60. The comparisons between Tongji-Swarm2019 and GRACE/GRACE-FO monthly solutions show that Tongji-Swarm2019 solutions agree with GRACE/GRACE-FO models in terms of large-scale mass change signals over amazon, Greenland and other regions. We can conclude that Tongji-Swarm2019 monthly gravity field models are able to close the gap between GRACE and GRACE FO.</p>


2020 ◽  
Author(s):  
Qiujie Chen ◽  
Yunzhong Shen ◽  
Xingfu Zhang ◽  
Jürgen Kusche

<p>Due to the battery issue, the Gravity Recovery and Climate Experiment (GRACE) mission unfortunately came to an end in October 2017 after providing more than 15 years of mass transport information of our changing planet. To continue to monitoring the mass transport in the Earth system, the GRACE Follow-On (GRACE-FO) was launched in May 2018. As a new feature of GRACE-FO, a Laser Ranging Interferometer (LRI) was equipped to measure the inter-satellite range at a nanometer level. Since May 2019, GRACE-FO Level-1B observations have been made available to our community. Using the GRACE-FO Level-1B observations without laser ranging information, preliminary GRACE-FO gravity field solutions from Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL) and Graz University of Technology have been released. Incorporating laser ranging observations into gravity field determination, a preliminary time series of GRACE-FO gravity field solutions has been derived from Tongji University in collaboration with University of Bonn. In this paper, the signal and noise of our gravity field solutions are analyzed and compared to those from other research groups. Our results show that the laser ranging observations with a sampling rate of 2s are able to improve gravity field solutions by about 7% in terms of geoid degree variances up to degree and order 96 as compared to the K-Band ranging data with a sampling rate of 5s.</p>


2019 ◽  
Vol 37 (1) ◽  
pp. 111-127 ◽  
Author(s):  
Lucas Schreiter ◽  
Daniel Arnold ◽  
Veerle Sterken ◽  
Adrian Jäggi

Abstract. Even though ESA's three-satellite low-earth orbit (LEO) mission Swarm is primarily a magnetic field mission, it can also serve as a gravity field mission. Located in a near-polar orbit with initial altitudes of 480 km for Swarm A and Swarm C and 530 km for Swarm B and equipped with geodetic-type dual frequency Global Positioning System (GPS) receivers, it is suitable for gravity field computation. Of course, the Swarm GPS-only gravity fields cannot compete with the gravity fields derived from the ultra-precise Gravity Recovery And Climate Experiment (GRACE) K-band measurements. But for various reasons like the end of the GRACE mission in October 2017, data gaps in the previous months due to battery aging, and the gap between GRACE and the recently launched GRACE Follow-On mission, Swarm gravity fields became important to maintain a continuous time series and to bridge the gap between the two dedicated gravity missions. By comparing the gravity fields derived from Swarm kinematic positions to the GRACE gravity fields, systematic errors have been observed in the Swarm results, especially around the geomagnetic equator. These errors are already visible in the kinematic positions as spikes up to a few centimeters, from where they propagate into the gravity field solutions. We investigate these systematic errors by analyzing the geometry-free linear combination of the GPS carrier-phase observations and its time derivatives using a combination of a Gaussian filter and a Savitzky–Golay filter and the Rate of Total Electron Content (TEC) Index (ROTI). Based on this, we present different weighting schemes and investigate their impact on the gravity field solutions in order to assess the success of different mitigation strategies. We will show that a combination of a derivative-based weighting approach with a ROTI-based weighting approach is capable of reducing the geoid rms from 21.6 to 12.0 mm for a heavily affected month and that almost 10 % more kinematic positions can be preserved compared to a derivative-based screening.


2021 ◽  
Vol 366 (6) ◽  
Author(s):  
Wutong Gao ◽  
Jianguo Yan ◽  
Weitong Jin ◽  
Chen Yang ◽  
Linzhi Meng ◽  
...  

2020 ◽  
Author(s):  
Gabriele Cambiotti ◽  
Karim Douch ◽  
Stefano Cesare ◽  
Alberto Anselmi ◽  
Nico Sneeuw ◽  
...  

<p>We perform Next Gerataion Gravity Mission (NGGM) simulations over a 12-year operational period by including in the background gravity field the time-dependent gravity anomalies caused by different earthquake scenarios and considering different sources of error on 28-day mean gravity field solutions: the instrumental errors of the interferometer and accelerometers, the time depenendent background model and the atmosphere-ocean dealiasing. In order to assess whether the observational errors mask or not the earthquake-induced gravity signals, we assume known the background gravity field and the spatial and temporal pattern of the earthquake-induced gravity anomalies. Then, for each earthquake, we estimate the amplitude of its gravity anomaly by inverting the NGGM synthetic data time series and we check its consistency with the expected amplitude, as well as with the null hypothesis. In order to investigate case studies representative of the main earthquake characteristics and their compliance with the NGGM specifications, we have considered normal, inverse and strike-slip focal mechanisms striking with different angles with respect to the polar orbit, reaching the Earth surface and in depth, occurring inland, off-shore and close to the coastlines and at the beginning (2-4 years), at the middle (5-7 years) and at the end (8-10 years) of the 12-year operational period. The fault dimensions and slip distribution vary with the seismic moment magnitude and are prescribed according to the circular fault model by Eshelby (1957). Furthermore, we also consider two different rheological stratifications with asthenospheric viscosity of 10¹⁸ and 10¹⁹ Pa s. In order to discuss whether the earthquake signal can be discriminated from other geophysical processes (like atmosphere, ocean, hydrology and glacial isostatic adjustment), we also perform the same inversion but, this time, its amplitude is estimated jointly with the time dependent background gravity field, which we simply model using static values, trends and periodical functions.</p>


2020 ◽  
Vol 55 (3) ◽  
pp. 100-117
Author(s):  
Viktor Szabó ◽  
Dorota Marjańska

AbstractGlobal satellite gravity measurements provide unique information regarding gravity field distribution and its variability on the Earth. The main cause of gravity changes is the mass transportation within the Earth, appearing as, e.g. dynamic fluctuations in hydrology, glaciology, oceanology, meteorology and the lithosphere. This phenomenon has become more comprehensible thanks to the dedicated gravimetric missions such as Gravity Recovery and Climate Experiment (GRACE), Challenging Minisatellite Payload (CHAMP) and Gravity Field and Steady-State Ocean Circulation Explorer (GOCE). From among these missions, GRACE seems to be the most dominating source of gravity data, sharing a unique set of observations from over 15 years. The results of this experiment are often of interest to geodesists and geophysicists due to its high compatibility with the other methods of gravity measurements, especially absolute gravimetry. Direct validation of gravity field solutions is crucial as it can provide conclusions concerning forecasts of subsurface water changes. The aim of this work is to present the issue of selection of filtration parameters for monthly gravity field solutions in RL06 and RL05 releases and then to compare them to a time series of absolute gravimetric data conducted in quasi-monthly measurements in Astro-Geodetic Observatory in Józefosław (Poland). The other purpose of this study is to estimate the accuracy of GRACE temporal solutions in comparison with absolute terrestrial gravimetry data and making an attempt to indicate the significance of differences between solutions using various types of filtration (DDK, Gaussian) from selected research centres.


2021 ◽  
Author(s):  
Athina Peidou ◽  
Felix Landerer ◽  
David Wiese ◽  
Matthias Ellmer ◽  
Eugene Fahnestock ◽  
...  

<p>The performance of Gravity Recovery and Climate Experiment Follow‐On (GRACE-FO) laser ranging interferometer (LRI) system is assessed in both space and frequency domains. With LRI’s measurement sensitivity being as small as 0.05 nm/s<sup>2</sup> at GRACE-FO altitude we perform a thorough assessment on the ability of the instrument to detect real small-scale high-frequency gravity signals. Analysis of range acceleration measurements along the orbit for nearly one year of daily solutions suggests that LRI can detect signals induced by mass perturbation up to 26 mHz, i.e., ~145 km spatial resolution. Additionally, high frequency signals that are not adequately modeled by dealiasing models are clearly detected and their magnitude is shown to reach 2-3 nm/s<sup>2</sup>. The alternative K‐band microwave ranging system (KBR) is also examined and results demonstrate the inability of KBR to retrieve signals above 15mHz (i.e., shorter than ~200 km) as the noise of the KBR range acceleration increases rapidly. Overall, the first stream of LRI measurements shows that the high signal to noise ratio allows for detection of mass transfers in finer scales, however the ability to fully exploit the high-quality signal measured by the LRI in Level 2 products is still constrained by noise of background models and other onboard instrumentation and measurement system errors.</p><p>Copyright Acknowledgment: This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Science Program.</p>


2021 ◽  
Author(s):  
Linda Geisser ◽  
Ulrich Meyer ◽  
Daniel Arnold ◽  
Adrian Jäggi ◽  
Daniela Thaller

<p>The Astronomical Institute of the University of Bern (AIUB) collaborates with the Federal Agency for Cartography and Geodesy (BKG) in Germany to develop new procedures to generate products for the International Laser Ranging Service (ILRS). In this framework the SLR processing of the standard ILRS weekly solutions of spherical geodetic satellites at AIUB, where the orbits are determined in 7-day arcs together with station coordinates and other geodetic parameters, is extended from LAGEOS-1/2 and the Etalon-1/2 satellites to also include the LARES satellite orbiting the Earth at much lower altitude. Since a lower orbit experiences a more variable enviroment, e.g. it is more sensitive to time-variable Earth's gravity field, the orbit parametrization has to be adapted and also the low degree spherical harmonic coefficients of Earth's gravity field have to be co-estimated. The impact of the gravity field estimation is studied by validating the quality of other geodetic parameters such as geocenter coordinates, Earth Rotation Parameters (ERPs) and station coordinates. The analysis of the influence of LARES on the SLR solution shows that a good datum definition is important.</p>


2021 ◽  
Author(s):  
Basara Miyahara ◽  
Laura Sánchez ◽  
Martin Sehnal

<p>The Global Geodetic Observing System (GGOS) is the contribution of Geodesy to the observation and monitoring of the Earth System. Geodesy is the science of determining and representing the shape of the Earth, its gravity field and its rotation as a function of time. A core element to reach this goal are stable and consistent geodetic reference frames, which provide the fundamental layer for the determination of time-dependent coordinates of points or objects, and for describing the motion of the Earth in space. Traditionally, geodetic reference frames have been used for surveying, mapping, and space-based positioning and navigation. With modern instrumentation and analytical techniques, Geodesy is now capable of detecting time variations ranging from large and secular scales to very small and transient deformations with increasing spatial and temporal resolution, high accuracy, and decreasing latency. GGOS has been working closely with components of International Association of Geodesy (IAG) to provide consistent and openly available observations of the spatial and temporal changes of the shape and gravity field of the Earth, as well as the temporal variations of the Earth’s rotation. These efforts make available a global picture of the surface kinematics of our planet, including the ocean, ice cover, continental water, and land surfaces, as well as estimates of mass anomalies, mass transport, and mass exchange in the System Earth. Surface kinematics and mass transport together are the key to global mass balance determination, and are an important contribution to understanding the energy budget of our planet. In order to play its vital role, GGOS has following missions; a) to provide the observations needed to monitor, map, and understand changes in the Earth’s shape, rotation, and mass distribution, b) to provide the global geodetic frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications, c) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. For the mission, GGOS works tighter with components of the IAG, more specifically, IAG Services, IAG Commissions and IAG Inter-Commission Committees. The IAG Services provide the infrastructure and products on which all contributions of GGOS are based, and the IAG Commissions and IAG Inter-Commission Committees provide expertise and support to address key scientific issues within GGOS. Together with the IAG components, GGOS provides the fundamental infrastructure underpinning Earth sciences and their applications.</p>


2021 ◽  
Author(s):  
Roland Pail

<p>Next Generation Gravity Missions are expected to enhance our knowledge of mass transport processes in the Earth system, establishing their products applicable to new scientific fields and serving societal needs. Compared to the current situation (GRACE Follow-On), a significant step forward to increase spatial and temporal resolution can only be achieved by new mission concepts, complemented by improved instrumentation and tailored processing strategies.</p><p>In extensive numerical closed-loop mission simulations studies, different mission concepts have been studied in detail, with emphasis on orbit design and resulting spatial-temporal ground track pattern, enhances processing and parameterization strategies, and improved post-processing/filtering strategies. Promising candidates for a next-generation gravity mission are double-pair and multi-pair constellations of GRACE/GRACE-FO-type satellites, as they are currently jointly studied by ESA and NASA. An alternative concept is high-precision ranging between high- and low-flying satellites. Since such a constellation observes mainly the radial component of gravity-induced orbit perturbations, the error structure is close to isotropic, which significantly reduces artefacts of along-track ranging formations. This high-low concept was proposed as ESA Earth Explorer 10 mission MOBILE and is currently further studies under the name MARVEL by the French space agency. Additionally, we evaluate the potential of a hybridization of electro-static and cold-atom accelerometers in order to improve the accelerometer performance in the low-frequency range.</p><p>In this contribution, based on full-fledged numerical closed-loop simulations with realistic error assumptions regarding their key payload, different mission constellations (in-line single-pair, Bender double-pair, multi-pairs, precise high-low tracking) are assessed and compared. Their overall performance, dealiasing potential, and recovery performance of short-periodic gravity signals are analyzed, in view of their capabilities to retrieve gravity field information with short latencies to be used for societally relevant service applications, such as water management, groundwater monitoring, and forecasting of droughts and floods.</p>


Sign in / Sign up

Export Citation Format

Share Document