scholarly journals Co-Seismic Deformation and Fault Slip Model of the 2017 Mw 7.3 Darbandikhan, Iran–Iraq Earthquake Inferred from D-InSAR Measurements

2019 ◽  
Vol 11 (21) ◽  
pp. 2521 ◽  
Author(s):  
Zicheng Huang ◽  
Guohong Zhang ◽  
Xinjian Shan ◽  
Wenyu Gong ◽  
Yingfeng Zhang ◽  
...  

The 12 November 2017 Darbandikhan earthquake (Mw 7.3) occurred along the converence zone. Despite the extensive research on this earthquake, none of this work explained whether this earthquake rupture was limited to the thick sedimentary cover or it extends to the underlying crystalline basement rock (or both). Besides, whether this region will generate devastating earthquakes again and whether there is a one-to-one correlation between these anticlines and blind-reverse faults need further investigation. In this study, we derived the co-seismic interferograms from the Sentinel-1A/B data and successfully described the surface deformation of the main seismic zone. The fringe patterns of both the ascending and descending interferograms show that the co-seismic deformation is dominated by horizontal movements. Then, using the along- and across-track deformation fields of different orbits, we retrieved the three-dimensional deformation field, which suggests that the Darbandikhan earthquake may be a blind thrust fault close to the north–south direction. Finally, we inverted the geometrical parameters of the seismogenic fault and the slip distribution of the fault plane. The results show that the source fault has an average strike of 355.5° and a northeast dip angle of −17.5°. In addition, the Darbandikhan earthquake has an average rake of 135.5°, with the maximum slip of 4.5 m at 14.5 km depth. On the basis of the derived depth and the aftershock information provided by the Iranian Seismological Center, we inferred that this event primarily ruptured within the crystalline basement and the seismogenic fault is the Zagros Mountain Front Fault (MFF). The seismogenic region has both relatively low historical seismicity and convergent strain rate, which suggests that the vicinity of the epicenter may have absorbed the majority of the energy released by the convergence between the Arabian and the Eurasian plates and may generate Mw > 7 earthquakes again. Moreover, the Zagros front fold between the Lurestan Arc and the Kirkuk Embayment may be generated by the long-distance slippage of the uppermost sedimentary cover in response to the sudden shortening of the MFF basement. We thus conclude that the master blind thrust may control the generation of the Zagros front folding.

2020 ◽  
Vol 221 (1) ◽  
pp. 451-466 ◽  
Author(s):  
Qian Xu ◽  
Qiang Chen ◽  
Jingjing Zhao ◽  
Xianwen Liu ◽  
Yinghui Yang ◽  
...  

SUMMARY A sequence of earthquake events consisting of three large shocks occurred in Central Italy from August to October in 2016 with the duration of almost 2 months. The preliminary study on the seismic mechanism suggests that the sequence of events is the result from the activity of the SW dipping Mt Bove–Mt Vettore–Mt Gorzano normal fault system. For investigation and understanding of the coseismic faulting of the seismogenic fault alignment, we collect a set of comprehensive satellite observations including the Sentinel-1A, ALOS-2/PALSAR-2 and GPS data to map the coseismic surface deformation and estimate the source models in this study. The derived faulting model for the first Amatrice event is characterized by two distinct slip asperities suggesting that it is a predominantly normal dip-slip motion with slight strike-slip component. The second event, Visso earthquake is almost a purely normal rupture. The third Norcia event is dominated by the normal dip-slip rupture of the seismogenic fault, and has propagated up to the ground with significant slip. The three faulting models are then utilized to quantify the Coulomb failure stress (CFS) change over the seismic zone. First, the CFS change on the subsequent two seismogenic faults of the earthquake sequence is estimated, and the derived positive CFS change induced by the preceding earthquakes suggests that the early events have positive effects on triggering the subsequent seismicity. We then explore the response relation of the aftershocks including 961 events with magnitudes larger than M 3.0 to the CFS change over the seismic zone. It suggests that the rupture pattern of the aftershocks is similar to the major shocks with predominantly normal dip-slip. To assess the risk of the future seismic hazard, we analyse quantitatively the spatial distribution of aftershock occurrence and CFS transfer at the seismogenic depth, indicating that the ruptures of the three major shocks do partly release the accumulated strain on the associated fault alignment as well as the dense aftershock, but the CFS increase zone with few aftershocks in the southwest of the eastern Quaternary fault alignment of Central Italy poses the potential of further rupture. In particular, the distribution of aftershock migration also suggests that the north extension of the Mt Bove fault is the potential zone with rupture risk.


Author(s):  
Evgenia Salin ◽  
Jeremy Woodard ◽  
Krister Sundblad

AbstractGeological investigations of a part of the crystalline basement in the Baltic Sea have been performed on a drill core collected from the depth of 1092–1093 m beneath the Phanerozoic sedimentary cover offshore the Latvian/Lithuanian border. The sample was analyzed for geochemistry and dated with the SIMS U–Pb zircon method. Inherited zircon cores from this migmatized granodioritic orthogneiss have an age of 1854 ± 15 Ma. Its chemical composition and age are correlated with the oldest generation of granitoids of the Transscandinavian Igneous Belt (TIB), which occur along the southwestern margin of the Svecofennian Domain in the Fennoscandian Shield and beneath the Phanerozoic sedimentary cover on southern Gotland and in northwestern Lithuania. It is suggested that the southwestern border of the Svecofennian Domain is located at a short distance to the SW of the investigated drill site. The majority of the zircon population shows that migmatization occurred at 1812 ± 5 Ma, with possible evidence of disturbance during the Sveconorwegian orogeny.


1981 ◽  
Vol 71 (6) ◽  
pp. 1933-1942
Author(s):  
F. Steve Schilt ◽  
Robert E. Reilinger

Abstract Relative vertical displacements of bench marks in extreme western Kentucky have been determined by comparison of successive leveling surveys in 1947 and 1968. The resulting pattern of apparent surface deformation shows steep offset which can be closely modeled by a normal fault buried in an elastic half-space. The offset is located near the northern boundary of the Mississippi Embayment and the New Madrid seismic zone, an area where faults have previously been inferred on the basis of both geological and geophysical evidence. If the apparent movement is due to slip along a fault, several lines of evidence (regional structure, earthquake data, and lineations) suggest that the postulated fault trends NNE. Thirteen earthquakes were recorded in this area between the times of leveling; focal mechanisms exist for three of these. The nearest of these three focal mechanisms to the leveling offset implies normal faulting. The magnitude of the earthquake, however, appears to be too small to account for the amount of slip required by the fault model. Thus the apparent deformation may have accumulated with several undetected small earthquakes, or gradually as aseismic creep.


2020 ◽  
Author(s):  
Daniel Muñoz-López ◽  
Gemma Alías ◽  
David Cruset ◽  
Irene Cantarero ◽  
Cédric M. Jonh ◽  
...  

Abstract. Calcite veins precipitated in the Estamariu thrust during two tectonic events decipher the temporal and spatial relationships between deformation and fluid migration in a long-lived thrust and determine the influence of basement rocks on the fluid chemistry during deformation. Structural and petrological observations constrain the timing of fluid migration and vein formation, whilst geochemical analyses (δ13C, δ18O, 87Sr/86Sr, clumped isotope thermometry and elemental composition) of the related calcite cements and host rocks indicate the fluid origin, pathways and extent of fluid-rock interaction. The first tectonic event, recorded by calcite cements Cc1a and Cc2, is related to the Alpine reactivation of the Estamariu thrust, and is characterized by the migration of meteoric fluids, heated at depth (temperatures between 56 and 98 °C) and interacted with crystalline basement rocks before upflowing through the thrust zone. During the Neogene extension, the Estamariu thrust was reactivated and normal faults and shear fractures with calcite cements Cc3, Cc4 and Cc5 developed. Cc3 and Cc4 precipitated from hydrothermal fluids (temperatures between 127 and 208 °C and between 102 and 167 °C, respectively) derived from crystalline basement rocks and expelled through fault zones during deformation. Cc5 precipitated from low temperature meteoric waters percolating from the surface through small shear fractures. The comparison between our results and already published data in other structures from the Pyrenees suggests that regardless of the origin of the fluids and the tectonic context, basement rocks have a significant influence on the fluid chemistry, particularly on the 87Sr/86Sr ratio. Accordingly, the cements precipitated from fluids interacted with crystalline basement rocks have significantly higher 87Sr/86Sr ratios (> 0.710) with respect to those precipitated from fluids that have interacted with the sedimentary cover (


2020 ◽  
Author(s):  
Tomasz Janik ◽  
Vitaly Starostenko ◽  
Paweł Aleksandrowski ◽  
Tamara Yegorova ◽  
Wojciech Czuba ◽  
...  

<p>Crustal and uppermost mantle structure along the Teisseyre-Tornquist Zone (TTZ)  was explored along the ~550 km long, NW-SE-trending TTZ-South profile, using seismic wide-angle reflection/refraction (WARR) method. The profile line was intended to follow the border between the East European Craton (EEC) and the so called Palaeozoic Platform (PP) of north-central Europe, believed to contain a number of crustal blocks that were accreted to the craton during pre-late Carboniferous times, defining the Trans-European Suture Zone (TESZ).</p><p>The seismic velocity model of the TTZ-South profile shows lateral variations in crustal structure. Its Ukrainian segment crosses the interior of the Sarmatian segment of the EEC, where the crystalline basement gradually dips from ~2 km depth in the SE to ~12 km at the Ukrainian-Polish border. This part of the model shows a four-layered crustal structure, with an up to 15 km-thick sedimentary cover, an underlying crystalline upper crust, a 10-15 km-thick middle crust and a ~15 km thick lower crust. In Poland, the profile passes along the TESZ/EEC transition zone of complex crustal structure. The crystalline basement, whose top occurs at depths of 10-17 km, separates the sedimentary cover from the ~10 km thick mid-crustal layer (Vp=6.5-6.6 km/s), which, in turn, overlies a block of 10-15 km thickness with upper crustal velocities (Vp~6.2 km/s). The latter is underlain by a ~10-15 km-thick lower crust. Along most of the model one can see conspicuous velocity inversion zones occuring at various depths. At intersections of the TTZ-South profile with some previous deep seismic profiles (e.g. CEL02, CEL05, CEL14, PANCAKE) such inversions document complex wedging relationships between the EEC and PP crustal units. These may have resulted from tectonic compression and thick-skinned thrusting due to either Neoproterozoic EEC collision with accreting terranes or intense Variscan orogenic events. Five high velocity bodies (HVB; V<sub>p</sub> = 6.85-7.2 km/s) were detected in the middle and lower crust at 15-37 km depth. The Moho depth varies substantially along the profile. It is at ~42 km depth in the NW and deepens SE-ward to ~50 km at ~685 km. Subsequently, it rises abruptly to ~43 km at the border of the Sarmatian segment of the EEC and sinks again to ~50 km beneath the Lviv Paleozoic trough at ~785 km. From this point until the SE end of the profile, the Moho gently shallows, up to a depth of ~37 km, including a step-like jump of 2 km at ~875 km. Such abrupt Moho steps may be related to crust-scale strike-slip faults. Along the whole profile, sub-Moho velocities are ~8.05-8.1 km/s, and at depths of 57-63 km Vp values reach 8.2-8.25 km/s. Four reflectors/refractors were modelled in the upper mantle at ~57-65 km and ~80 km depths.</p>


1992 ◽  
Vol 63 (3) ◽  
pp. 343-348 ◽  
Author(s):  
Steven G. Wesnousky ◽  
Lisa M. Leffler

Abstract The great 1811–12 New Madrid earthquakes produced extensive liquefaction in the meisoseismal zone, which is largely within the St. Francis drainage basin of Missouri and Arkansas. We examined 10’s of kilometers of ditch banks within the meisoseismal zone for evidence of prehistoric liquefaction events. Radiocarbon dates indicate that the exposures studied provide a record of the last 5,000 to 10,000 years. Our search has revealed no evidence of widespread paleoliquefaction events and, hence, provides no independent support for the relatively short 550 to 1100 year return time of 1811–12 type earthquakes implied by analyses of the statistics of historical seismicity.


1992 ◽  
Vol 63 (3) ◽  
pp. 249-262 ◽  
Author(s):  
Anthony J. Crone

Abstract A preliminary interpretation of about 135 km of seismic-reflection data provides new information on the structural relations between the the Crittenden County fault zone and the subjacent rift-bounding faults along the southeastern margin of the Reelfoot rift in the New Madrid seismic zone. On the reflection data, the rift boundary is marked by a 4- to 8-km-wide zone of incoherent reflected energy and disrupted reflectors in the lower part of the well-stratified, lower Paleozoic sedimentary rocks and in the underlying Precambrian crystalline basement. In places, the zone of disrupted reflectors extends into the upper part of the Paleozoic rocks, and, on some lines, disrupted reflectors and distinct faults are present in the Upper Cretaceous and Tertiary rocks of the Mississippi Embayment. The Crittenden County fault zone is interpreted as a northwest-dipping, high-angle reverse fault with an up-to-the-northwest throw, which is opposite to the net structural relief in the subjacent graben. The fault zone is at least 32 km long and coincides with the rift margin in southwestern Crittenden County, but to the northeast, it diverges away from the aeromagnetically defined margin of the rift by almost 4 km. Most faults in the Crittenden County fault zone are apparently ancient rift-bounding normal faults that were reactivated with a significant amount of reverse slip during the Mesozoic and Cenozoic. On the basis of its apparent connection with the rift-bounding faults, the evidence of its long history of recurrent movement, and its orientation with respect to the modern stress field, the Crittenden County fault zone might be considered to potentially generate major earthquakes. In contrast, the possibility that the Crittenden County fault zone could be a bending-moment fault argues against it being extremely hazardous. Precambrian crystalline basement interpreted on the profiles is commonly deeper than magnetic basement by as much as 2.5 km. This discrepancy between shallow magnetic basement and deeper crystalline basement could be explained by the presence of igneous intrusions in the Paleozoic strata immediately above Precambrian basement.


2018 ◽  
Author(s):  
Stefano Tavani ◽  
Mariano Parente ◽  
Francesco Puzone ◽  
Amerigo Corradetti ◽  
Gholamreza Gharabeigli ◽  
...  

Abstract. The 2017 Mw Iran-Iraq earthquake occurred in a region where the pattern of major plate convergence is well constrained, but limited information is available on the seismogenic structures. Geological observations, interpretation of seismic reflection profiles, and well data are used in this paper to build a regional balanced cross-section that provides a comprehensive picture of the geometry and dimensional parameters of active faults in the hypocentral area. Our results indicate: (i) coexistence of thin- and thick-skinned thrusting, (ii) reactivation of inherited structures, and (iii) occurrence of weak units promoting heterogeneous deformation within the Paleo-Cenozoic sedimentary cover and partial decoupling from the underlying basement. According to our study, the main shock of the November 2017 seismic sequence is located within the basement, along the low-angle Mountain Front Fault. Aftershocks unzipped the up-dip portion of the same fault. This merges with a detachment level located at the base of the Paleozoic succession, to form a crustal-scale fault-bend anticline. Size and geometry of the Mountain Front Fault are consistent with a down-dip rupture width of 30 km, which is required for an Mw 7.3 earthquake.


2003 ◽  
Vol 174 (5) ◽  
pp. 481-496 ◽  
Author(s):  
Jean Delteil ◽  
Jean-François Stephan ◽  
Mikaël Attal

Abstract Structural investigations reveal intense and heterogeneous deformation of the sedimentary cover attached to the basement complex of the southern Argentera and Barrot massifs (southernmost External Basement Massifs of the French Alps). Permian and early Triassic syn-depositional extensional tectonics imparted a tilted block pattern to the massifs. An early Miocene first stage of Alpine compression caused pervasive cleavage. This cleavage was controlled by the former pre-existing faults but is nevertheless consistent with NNE contraction. Where regional shortening is orthogonal to the trend of pre-existing faults the pervasive deformation produced either irrotational compressional strain (where no fault inversion occurred), or rotational compressional strain involving syn-cleavage shearing (where faults with favorable paleo-dip were inverted). Where the shortening direction is oblique to the paleo-fault trends, a component of strike-slip movement may locally prevail. A 22 %, N020o directed horizontal shortening, of 11 km, has been calculated based on deformed sedimentary markers in the Permian series and parallel folds in Lower Triassic quartzite. A shallower deformation as brittle reverse faults postdates the cleavage at the southwestern tip of the Argentera Massif and accounts for 4 km of extra shortening. Both types of deformation are connected at depth to a crustal blind thrust system and the Argentera Massif is over-thrust to the south-southwest. The observed strain indicates the Argentera Massif area underwent, from earliest Miocene to Present, a NNE to N rotating compression at distance from the left-lateral southwestern boundary of the Adria block.


1991 ◽  
Vol 28 (8) ◽  
pp. 1232-1238 ◽  
Author(s):  
R. R. Parrish ◽  
I. Reichenbach

Numerous diatremes of middle and late Paleozoic age intrude miogeoclinal middle and lower Paleozoic strata in the Canadian Cordillera. In addition to abundant crustal xenoliths and conspicuous mantle-derived mineral xenocrysts, rare zircon grains are present. U–Pb dating of single zircon crystals from many of these diatremes has failed to identify the presence of cogenetic (magmatic) zircons. All dated zircon grains are interpreted as xenocrysts derived from the crust. Their morphologies range from euhedral to very rounded, and their ages range from early Paleozoic to Archean. Most ages fall between 1.8 and 2.1 Ga, with subordinate age groupings in the late Archean (ca. 2.6 Ga), Middle Proterozoic (1.0–1.1 Ga), and early Paleozoic (ca. 470 Ma, 530 Ma). The Proterozoic and Archean zircons could have been derived from either the crystalline basement or its overlying sedimentary cover of Late Proterozoic to early Paleozoic age. Paleozoic zircons were probably derived from either intrusions within the basement or sills that intrude the early Paleozoic sedimentary cover, and they signify magmatic activity possibly related to rifting of the continental margin.


Sign in / Sign up

Export Citation Format

Share Document