scholarly journals Impacts of Urbanization on the Ecosystem Services in the Guangdong-Hong Kong-Macao Greater Bay Area, China

2020 ◽  
Vol 12 (19) ◽  
pp. 3269
Author(s):  
Xuege Wang ◽  
Fengqin Yan ◽  
Fenzhen Su

Unprecedented urbanization has occurred globally, which has converted substantial natural landscapes into impervious surfaces and further impacted ecosystem services and functioning. In this study, we quantified the spatiotemporal patterns of urbanization and investigated the impacts of urbanization on the ecosystem service value (ESV) in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) of China from 1980 to 2018. The results show that the GBA has experienced extensive urbanization, with the urban area increasing from 2607.4 to 8243.5 km2 from 1980 to 2018. Zhongshan, Zhuhai, Dongguan, Shenzhen, and Foshan exhibited the top five highest urban expansion rates. Throughout the study period, edge expansion was the most dominant growth mode, with a decreasing trend, while infilling increased in the GBA. The total ESV loss induced by urban expansion in the GBA reached 40.5 billion yuan over the past four decades. The ESV loss due to the water body decrease caused by urbanization was the largest. Our study suggests that decision-makers should control new urban areas and protect water bodies, wetlands, and forests with high ESVs to promote the sustainable development of urban agglomerations.

Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 501
Author(s):  
Xuege Wang ◽  
Fengqin Yan ◽  
Yinwei Zeng ◽  
Ming Chen ◽  
Bin He ◽  
...  

Extensive urbanization around the world has caused a great loss of farmland, which significantly impacts the ecosystem services provided by farmland. This study investigated the farmland loss due to urbanization in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) of China from 1980 to 2018 based on multiperiod datasets from the Land Use and Land Cover of China databases. Then, we calculated ecosystem service values (ESVs) of farmland using valuation methods to estimate the ecosystem service variations caused by urbanization in the study area. The results showed that 3711.3 km2 of farmland disappeared because of urbanization, and paddy fields suffered much higher losses than dry farmland. Most of the farmland was converted to urban residential land from 1980 to 2018. In the past 38 years, the ESV of farmland decreased by 5036.7 million yuan due to urbanization, with the highest loss of 2177.5 million yuan from 2000–2010. The hydrological regulation, food production and gas regulation of farmland decreased the most due to urbanization. The top five cities that had the largest total ESV loss of farmland caused by urbanization were Guangzhou, Dongguan, Foshan, Shenzhen and Huizhou. This study revealed that urbanization has increasingly become the dominant reason for farmland loss in the GBA. Our study suggests that governments should increase the construction of ecological cities and attractive countryside to protect farmland and improve the regional ESV.


2020 ◽  
Vol 12 (16) ◽  
pp. 2615
Author(s):  
Jie Zhang ◽  
Le Yu ◽  
Xuecao Li ◽  
Chenchen Zhang ◽  
Tiezhu Shi ◽  
...  

The Guangdong–Hong Kong–Macau Greater Bay Area (GBA) of China is one of the largest bay areas in the world. However, the spatiotemporal characteristics and driving mechanisms of urban expansions in this region are poorly understood. Here we used the annual remote sensing images, Geographic Information System (GIS) techniques, and geographical detector method to characterize the spatiotemporal patterns of urban expansion in the GBA and investigate their driving factors during 1986–2017 on regional and city scales. The results showed that: the GBA experienced an unprecedented urban expansion over the past 32 years. The total urban area expanded from 652.74 km2 to 8137.09 km2 from 1986 to 2017 (approximately 13 times). The annual growth rate during 1986–2017 was 8.20% and the annual growth rate from 1986 to 1990 was the highest (16.89%). Guangzhou, Foshan, Dongguan, and Shenzhen experienced the highest urban expansion rate, with the annual increase of urban areas in 51.51, 45.54, 36.76, and 23.26 km2 y−1, respectively, during 1986–2017. Gross Domestic Product (GDP), income, road length, and population were the most important driving factors of the urban expansions in the GBA. We also found the driving factors of the urban expansions varied with spatial and temporal scales, suggesting the general understanding from the regional level may not reveal detailed urban dynamics. Detailed urban management and planning policies should be made considering the spatial and internal heterogeneity. These findings can enhance the comprehensive understanding of this bay area and help policymakers to promote sustainable development in the future.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1167
Author(s):  
Shaohua Zhang ◽  
Kun Yang ◽  
Yuling Ma ◽  
Mingchan Li

Different urban growth patterns have various impact degrees on the urban ecosystem and environment. Impervious surface, a typical artificial construction can be used to reflect urban development. Therefore, this study estimated the spatiotemporal dynamics and expansion patterns of impervious surface area (ISA) in the Guangdong-Hong Kong-Macau (GHM) Bay Area since the establishment of the “Pearl River Delta economic zone” in 1994. Landsat time-series images were used to map the distribution of the ISA based on the combinational biophysical composition index (CBCI) and the bidirectional temporal filtering method (BTFM). The results indicated that the ISA in the GHM Bay Area drastically expanded from 569.23 km2 in 1994 to 10,200.53 km2 in 2016. In addition, the aggregation index (AI) value of the high-density area showed a decreasing trend from 1994 to 2004. However, the value of each landscape metric rapidly increased after 2004. Moreover, the mean ratio of the major axis to the minor axis of standard deviational ellipses from 1994 to 2004 was higher than that from 2005 to 2016. The results of landscape metrics and standard deviational ellipses indicated that the ISA growth pattern changed from edge expanding and leapfrogging to infilling and consolidation, with a turning point in 2004. Moreover, the principal sprawl orientation of the ISA was northwest to southeast before 2004. After 2004, the expansion direction of the ISA was less obvious due to the development pattern of infilling and consolidation. The rapid increase of GDP and population are the driving forces of urban expansion. However, topography and ecological protection policies as the limiting factors, which caused the infilling of the inner city and redevelopment of old urban areas.


2019 ◽  
Vol 11 (19) ◽  
pp. 2215 ◽  
Author(s):  
Chao Yang ◽  
Qingquan Li ◽  
Tianhong Zhao ◽  
Huizeng Liu ◽  
Wenxiu Gao ◽  
...  

The Guangdong–Hong Kong–Macau Greater Bay Area (GBA) of China is one of the major bay areas in the world. However, the spatiotemporal characteristics and rationalities of urban expansions within this region over a relatively long period of time are not well-understood. This study explored the spatiotemporal evolution of 11 cities within the GBA in 1987–2017 by integrating remote sensing, landscape analysis, and geographic information system (GIS) techniques, and further evaluated the rationalities of their expansion using the urban area population elastic coefficient (UPEC) and the urban area gross domestic product (GDP) elastic coefficient (UGEC). The results showed the following: (1) Guangzhou, Shenzhen, Foshan, Dongguan, Zhongshan, and Zhuhai experienced unprecedented urbanization compared with the other cities, and from 1987 to 2017, their urban areas expanded by 10.12, 11.48, 14.21, 24.90, 37.07, and 30.15 times, respectively; (2) several expansion patterns were observed in the 11 cities, including a mononuclear polygon radiation pattern (Guangzhou and Foshan), a double-nucleated polygon pattern (Macau and Zhongshan), and a multi-nuclear urbanization pattern (Shenzhen, Hong Kong, Dongguan, Jiangmen, Huizhou, Zhaoqing, and Zhuhai); (3) with regard to the proportion of area, the edge-expansion and outlying growth types were the predominant types for all 11 cities, and the infilling growth type was the one of the important types during 2007–2017 for Shenzhen, Hong Kong, Dongguan, Zhongshan, and Foshan; (4) the expansion of most cities took on an urban-to-rural landscape gradient, especially for Guangzhou, Shenzhen, Foshan, Zhongshan, Dongguan, and Zhuhai; and (5) the rationalities of expansion in several time periods were rational for Guangzhou (1997–2007), Hong Kong (2007–2017), Foshan (1987–2007), Huizhou (1987–1997), and Dongguan (1997–2007), and the rationalities of expansion in the other cities and time periods were found to be irrational. These findings may help policy- and decision-makers to maintain the sustainable development of the Guangdong–Hong Kong–Macau Greater Bay Area.


2021 ◽  
Vol 13 (9) ◽  
pp. 1611
Author(s):  
Xuege Wang ◽  
Fengqin Yan ◽  
Yinwei Zeng ◽  
Ming Chen ◽  
Fenzhen Su ◽  
...  

Ecosystem services provide important support for the sustainable development of humans; these services are provided by various ecosystems, but they have been severely influenced by anthropogenic activities globally in the past several decades. To respond to the Sustainable Development Goals of the United Nations, this study investigated the changes in ecosystem structure and estimated the associated ecosystem services value (ESV) since China’s reform and opening-up policy in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), one of the most developed and populous areas of China. Our results showed that dramatic changes in ecosystem structure occurred in the GBA, characterized by unpresented construction land sprawl (an average of 148 km2/yr) and extensive farmland loss (an average of 111 km2/yr). The change size and rate of ecosystems from 2000 to 2010 was the biggest and fastest, followed by that from 1990 to 2000. The ESV of the study area showed an overall decreasing trend, declining from 464 billion yuan to 346 billion yuan. The ESV supported by forest ecosystems and water body ecosystems made dominant contributions to the total ESV, ranging from 92% to 95%. Strong spatial heterogeneity of the ESV of the GBA might be noted throughout the study period, with lower values in the central region and higher values in the surrounding region. To realize sustainable development in the GBA; this study strongly suggests that local governments, and the public, scientifically use various ecosystems and their services, focusing on vigorously protecting ecosystems with high and important ESVs, such as water body, wetland, forest, and farmland ecosystems.


2021 ◽  
Vol 13 (13) ◽  
pp. 7044
Author(s):  
Dawei Wen ◽  
Song Ma ◽  
Anlu Zhang ◽  
Xinli Ke

Assessment of ecosystem services supply, demand, and budgets can help to achieve sustainable urban development. The Guangdong-Hong Kong-Macao Greater Bay Area, as one of the most developed megacities in China, sets up a goal of high-quality development while fostering ecosystem services. Therefore, assessing the ecosystem services in this study area is very important to guide further development. However, the spatial pattern of ecosystem services, especially at local scales, is not well understood. Using the available 2017 land cover product, Sentinel-1 SAR and Sentinel-2 optical images, a deep learning land cover mapping framework integrating deep change vector analysis and the ResUnet model was proposed. Based on the produced 10 m land cover map for the year 2020, recent spatial patterns of the ecosystem services at different scales (i.e., the GBA, 11 cities, urban–rural gradient, and pixel) were analyzed. The results showed that: (1) Forest was the primary land cover in Guangzhou, Huizhou, Shenzhen, Zhuhai, Jiangmen, Zhaoqing, and Hong Kong, and an impervious surface was the main land cover in the other four cities. (2) Although ecosystem services in the GBA were sufficient to meet their demand, there was undersupply for all the three general services in Macao and for the provision services in Zhongshan, Dongguan, Shenzhen, and Foshan. (3) Along the urban–rural gradient in the GBA, supply and demand capacity showed an increasing and decreasing trend, respectively. As for the city-level analysis, Huizhou and Zhuhai showed a fluctuation pattern while Jiangmen, Zhaoqing, and Hong Kong presented a decreasing pattern along the gradient. (4) Inclusion of neighborhood landscape led to increased demand scores in a small proportion of impervious areas and oversupply for a very large percent of bare land.


2020 ◽  
Vol 12 (24) ◽  
pp. 10233
Author(s):  
Shan Liu ◽  
Mingxia Yang ◽  
Yuling Mou ◽  
Yanrong Meng ◽  
Xiaolu Zhou ◽  
...  

Rapid urbanization has led to the continuous deterioration of the surrounding natural ecosystem. It is important to identify the key urbanization factors that affect ecosystem services and analyze the potential effects of these factors on the ecosystem. We selected the Beijing, Tianjin, and Hebei (BTH) urban agglomeration to investigate these effects, and designed three indicators to map the urbanization level: Population density, gross domestic product (GDP) density, and the construction land proportion. Four indicators were chosen to quantify ecosystem services: Food production, carbon sequestration and oxygen production, water conservation, and soil conservation. To handle the nonlinear interactions, we used a random forest (RF) method to assess the effect of urbanization on ecosystem services in the BTH area from 2000 to 2014. Our study demonstrated that population density and economic growth were the internal driving forces affecting ecosystem services. We observed changing trends in the effect of urbanization: The effect of population density on ecosystem services increased, the effect of the proportion of construction land was consistent with population density, and the effect of GDP density on ecosystem services decreased. Our results suggest that controlling the population and GDP would significantly influence the sustainable development in large urban areas.


2019 ◽  
Vol 11 (15) ◽  
pp. 1834 ◽  
Author(s):  
Shu Zhang ◽  
Chuanglin Fang ◽  
Wenhui Kuang ◽  
Fengyun Sun

Urban land use/cover and efficiency are important indicators of the degree of urbanization. However, research about comparing their changes at the megaregion level is relatively rare. In this study, we depicted the differences and inequalities of urban land and efficiency among megaregions in China using China’s Land Use/cover Dataset (CLUD) and China’s Urban Land Use/cover Dataset (CLUD-Urban). Furthermore, we analyzed regional inequality using the Theil index. The results indicated that the Guangdong-Hong Kong-Macao Great Bay Area had the highest proportion of urban land (8.03%), while the Chengdu-Chongqing Megaregion had the highest proportion of developed land (64.70%). The proportion of urban impervious surface area was highest in the Guangdong-Hong Kong-Macao Great Bay Area (75.16%) and lowest in the Chengdu-Chongqing Megaregion (67.19%). Furthermore, the highest urban expansion occurred in the Yangtze River Delta (260.52 km2/a), and the fastest period was 2000–2010 (298.19 km2/a). The decreasing Theil index values for the urban population and economic density were 0.305 and 1.748, respectively, in 1980–2015. This study depicted the development trajectory of different megaregions, and will expect to provide a valuable insight and new knowledge on reasonable urban growth modes and sustainable goals in urban planning and management.


2019 ◽  
Vol 4 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Francisco de la Barrera ◽  
Cristián Henríquez ◽  
Fanny Coulombié ◽  
Cynnamon Dobbs ◽  
Alejando Salazar

Abstract Urban expansion in Latin-American cities is faster than urban planning. In order to implement sustainable planning the capacity of peri-urban areas to provide ecosystem services must be evaluated in the context of competing urbanization and conservation pressures. In this study we analyzed the effect of urban expansion on peri-urban vegetation of the Metropolitan Area of Santiago and what ecosystem services are provided by El Panul, land rich in biodiversity embedded in the fringe of the city. The city has lost vegetation while urbanized areas grow. Under this context, we evaluated the multi-functionality of El Panul through the quantification of three ecosystem services (ES): sense of place through the interviews of 60 residents, recreation via GIS analyses, and local climate regulation determined with air temperature measurements. El Panul increased the provision of urban green spaces, where inhabitants recognize and appreciate ES, and it plays a significant role in mitigating the urban heat island on summer nights. ES have emerged as a concept and framework for evaluating competing urban development alternatives.


Sign in / Sign up

Export Citation Format

Share Document