scholarly journals Quantitative Assessment of Landslide Risk Based on Susceptibility Mapping Using Random Forest and GeoDetector

2021 ◽  
Vol 13 (13) ◽  
pp. 2625
Author(s):  
Yue Wang ◽  
Haijia Wen ◽  
Deliang Sun ◽  
Yuechen Li

This study aims to evaluate risk and discover the distribution law for landslides, so as to enrich landslide prevention theory and method. It first selected Fengjie County in the Three Gorges Reservoir Area as the study area. The work involved developing a landslide risk map using hazard and vulnerability maps utilizing landslide dataset from 2001 to 2016. The landslide dataset was built from historical records, satellite images and extensive field surveys. Firstly, under four primary conditioning factors (i.e., topographic factors, geological factors, meteorological and hydrological factors and vegetation factors), 19 dominant factors were selected from 25 secondary conditioning factors based on the GeoDetector to form an evaluation factor library for the LSM. Subsequently, the random forest model (RF) was used to analyze landslide susceptibility. Then, the landslide hazard map was generated based on the landslide susceptibility mapping (LSM) for the study region. Thereafter, landslide vulnerability assessment was conducted using key elements (economic, material, community) and the weights were provided based on expert judgment. Finally, when risk equals vulnerability multiplied by hazard, the region was categorized as very low, low, medium, high and very high risk level. The results showed that most landslides distribute on both sides of the reservoir bank and the primary and secondary tributaries in the study area, which showed a spatial distribution pattern of more north than south. Elevation, lithology and groundwater type are the main factors affecting landslides. Fengjie County landslide risk level is mostly low (accounting for 73.71% of the study area), but a small part is high and very high risk level (accounting for 2.5%). The overall risk level shows the spatial distribution characteristics of high risk in the central and eastern urban areas and low risk in the southern and northern high-altitude areas. Secondly, it is necessary to strictly control the key risk areas, and carry out prevention and control zoning management according to local conditions. The study is conducted for a specific region but can be extended to other areas around the investigated area. The developed landslide risk map can be considered by relevant government officials for the smooth implementation of management at the regional scale.

2021 ◽  
Vol 13 (6) ◽  
pp. 1157
Author(s):  
Yimo Liu ◽  
Wanchang Zhang ◽  
Zhijie Zhang ◽  
Qiang Xu ◽  
Weile Li

Landslide susceptibility mapping is an effective approach for landslide risk prevention and assessments. The occurrence of slope instability is highly correlated with intrinsic variables that contribute to the occurrence of landslides, such as geology, geomorphology, climate, hydrology, etc. However, feature selection of those conditioning factors to constitute datasets with optimal predictive capability effectively and accurately is still an open question. The present study aims to examine further the integration of the selected landslide conditioning factors with Q-statistic in Geo-detector for determining stratification and selection of landslide conditioning factors in landslide risk analysis as to ultimately optimize landslide susceptibility model prediction. The location chosen for the study was Atsuma Town, which suffered from landslides following the Eastern Iburi Earthquake in 2018 in Hokkaido, Japan. A total of 13 conditioning factors were obtained from different sources belonging to six categories: geology, geomorphology, seismology, hydrology, land cover/use and human activity; these were selected to generate the datasets for landslide susceptibility mapping. The original datasets of landslide conditioning factors were analyzed with Q-statistic in Geo-detector to examine their explanatory powers regarding the occurrence of landslides. A Random Forest (RF) model was adopted for landslide susceptibility mapping. Subsequently, four subsets, including the Manually delineated landslide Points with 9 features Dataset (MPD9), the Randomly delineated landslide Points with 9 features Dataset (RPD9), the Manually delineated landslide Points with 13 features Dataset (MPD13), and the Randomly delineated landslide Points with 13 features Dataset (RPD13), were selected by an analysis of Q-statistic for training and validating the Geo-detector-RF- integrated model. Overall, using dataset MPD9, the Geo-detector-RF-integrated model yielded the highest prediction accuracy (89.90%), followed by using dataset MPD13 (89.53%), dataset RPD13 (88.63%) and dataset RPD9 (87.07%), which implied that optimized conditioning factors can effectively improve the prediction accuracy of landslide susceptibility mapping.


Author(s):  
Yue Wang ◽  
Deliang Sun ◽  
Haijia Wen ◽  
Hong Zhang ◽  
Fengtai Zhang

To compare the random forest (RF) model and the frequency ratio (FR) model for landslide susceptibility mapping (LSM), this research selected Yunyang Country as the study area for its frequent natural disasters; especially landslides. A landslide inventory was built by historical records; satellite images; and extensive field surveys. Subsequently; a geospatial database was established based on 987 historical landslides in the study area. Then; all the landslides were randomly divided into two datasets: 70% of them were used as the training dataset and 30% as the test dataset. Furthermore; under five primary conditioning factors (i.e., topography factors; geological factors; environmental factors; human engineering activities; and triggering factors), 22 secondary conditioning factors were selected to form an evaluation factor library for analyzing the landslide susceptibility. On this basis; the RF model training and the FR model mathematical analysis were performed; and the established models were used for the landslide susceptibility simulation in the entire area of Yunyang County. Next; based on the analysis results; the susceptibility maps were divided into five classes: very low; low; medium; high; and very high. In addition; the importance of conditioning factors was ranked and the influence of landslides was explored by using the RF model. The area under the curve (AUC) value of receiver operating characteristic (ROC) curve; precision; accuracy; and recall ratio were used to analyze the predictive ability of the above two LSM models. The results indicated a difference in the performances between the two models. The RF model (AUC = 0.988) performed better than the FR model (AUC = 0.716). Moreover; compared with the FR model; the RF model showed a higher coincidence degree between the areas in the high and the very low susceptibility classes; on the one hand; and the geographical spatial distribution of historical landslides; on the other hand. Therefore; it was concluded that the RF model was more suitable for landslide susceptibility evaluation in Yunyang County; because of its significant model performance; reliability; and stability. The outcome also provided a theoretical basis for application of machine learning techniques (e.g., RF) in landslide prevention; mitigation; and urban planning; so as to deliver an adequate response to the increasing demand for effective and low-cost tools in landslide susceptibility assessments.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 421 ◽  
Author(s):  
Viet-Ha Nhu ◽  
Ataollah Shirzadi ◽  
Himan Shahabi ◽  
Wei Chen ◽  
John J Clague ◽  
...  

We generated high-quality shallow landslide susceptibility maps for Bijar County, Kurdistan Province, Iran, using Random Forest (RAF), an ensemble computational intelligence method and three meta classifiers—Bagging (BA, BA-RAF), Random Subspace (RS, RS-RAF), and Rotation Forest (RF, RF-RAF). Modeling and validation were done on 111 shallow landslide locations using 20 conditioning factors tested by the Information Gain Ratio (IGR) technique. We assessed model performance with statistically based indexes, including sensitivity, specificity, accuracy, kappa, root mean square error (RMSE), and area under the receiver operatic characteristic curve (AUC). All four machine learning models that we tested yielded excellent goodness-of-fit and prediction accuracy, but the RF-RAF ensemble model (AUC = 0.936) outperformed the BA-RAF, RS-RAF (AUC = 0.907), and RAF (AUC = 0.812) models. The results also show that the Random Forest model significantly improved the predictive capability of the RAF-based classifier and, therefore, can be considered as a useful and an effective tool in regional shallow landslide susceptibility mapping.


2019 ◽  
Vol 8 (12) ◽  
pp. 545 ◽  
Author(s):  
Nayyer Saleem ◽  
Md. Enamul Huq ◽  
Nana Yaw Danquah Twumasi ◽  
Akib Javed ◽  
Asif Sajjad

Digital elevation models (DEMs) are considered an imperative tool for many 3D visualization applications; however, for applications related to topography, they are exploited mostly as a basic source of information. In the study of landslide susceptibility mapping, parameters or landslide conditioning factors are deduced from the information related to DEMs, especially elevation. In this paper conditioning factors related with topography are analyzed and the impact of resolution and accuracy of DEMs on these factors is discussed. Previously conducted research on landslide susceptibility mapping using these factors or parameters through exploiting different methods or models in the last two decades is reviewed, and modern trends in this field are presented in a tabulated form. Two factors or parameters are proposed for inclusion in landslide inventory list as a conditioning factor and a risk assessment parameter for future studies.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2685 ◽  
Author(s):  
Fumeng Zhao ◽  
Xingmin Meng ◽  
Yi Zhang ◽  
Guan Chen ◽  
Xiaojun Su ◽  
...  

Geological conditions along the Karakorum Highway (KKH) promote the occurrence of frequent natural disasters, which pose a serious threat to its normal operation. Landslide susceptibility mapping (LSM) provides a basis for analyzing and evaluating the degree of landslide susceptibility of an area. However, there has been limited analysis of actual landslide activity processes in real-time. The SBAS-InSAR (Small Baseline Subsets-Interferometric Synthetic Aperture Radar) method can fully consider the current landslide susceptibility situation and, thus, it can be used to optimize the results of LSM. In this study, we compared the results of LSM using logistic regression and Random Forest models along the KKH. Both approaches produced a classification in terms of very low, low, moderate, high, and very high landslide susceptibility. The evaluation results of the two models revealed a high susceptibility of land sliding in the Gaizi Valley and the Tashkurgan Valley. The Receiver Operating Characteristic (ROC) curve and historical landslide verification points were used to compare the evaluation accuracy of the two models. The Area under Curve (AUC) value of the Random Forest model was 0.981, and 98.79% of the historical landslide points in the verification points fell within the range of high and very high landslide susceptibility degrees. The Random Forest evaluation results were found to be superior to those of the logistic regression and they were combined with the SBAS-InSAR results to conduct a new LSM. The results showed an increase in the landslide susceptibility degree for 2808 cells. We conclude that this optimized landslide susceptibility mapping can provide valuable decision support for disaster prevention and it also provides theoretical guidance for the maintenance and normal operation of KKH.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3066
Author(s):  
Guangzhi Rong ◽  
Si Alu ◽  
Kaiwei Li ◽  
Yulin Su ◽  
Jiquan Zhang ◽  
...  

Among the most frequent and dangerous natural hazards, landslides often result in huge casualties and economic losses. Landslide susceptibility mapping (LSM) is an excellent approach for protecting and reducing the risks by landslides. This study aims to explore the performance of Bayesian optimization (BO) in the random forest (RF) and gradient boosting decision tree (GBDT) model for LSM and applied in Shuicheng County, China. Multiple data sources are used to obtain 17 conditioning factors of landslides, Borderline-SMOTE and Randomundersample methods are combined to solve the imbalanced sample problem. RF and GBDT models before and after BO are adopted to calculate the susceptibility value of landslides and produce LSMs and these models were compared and evaluated using multiple validation approach. The results demonstrated that the models we proposed all have high enough model accuracy to be applied to produce LSM, the performance of the RF is better than the GBDT model without BO, while after adopting the Bayesian optimized hyperparameters, the prediction accuracy of the RF and GBDT models is improved by 1% and 7%, respectively and the Bayesian optimized GBDT model is the best for LSM in this four models. In summary, the Bayesian optimized RF and GBDT models, especially the GBDT model we proposed for landslide susceptibility assessment and LSM construction has a very good application performance and development prospects.


Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Olanrewaju Samson Olaitan ◽  
Olowoporoku Oluwaseun

Background: It is against the background of the emerging incidence of coronavirus pandemic in Nigeria, and the need for its management that this study adapts gravity model for predicting the risk of the disease across states of the country. Methods: The paper relied on published government data on population, and gross domestic product, while the distance of town to the nearest international airport was also obtained. These data were log transformed and further used in the calculation of gravity scores for each state of the federation. Results: The study discovered that with the gravity score ranging from 2.942 to 4.437, all the states of the federation have the risk of being infected with the pandemic. Meanwhile Ogun State (4.837) has a very high risk of being infected with the disease. Other states with high risks are Oyo (4.312), Jigawa (4.235), Niger (4.148) and Katsina (4.083). However, Taraba State has the least infection risk of the pandemic in Nigeria. Factors influencing the risk level of the pandemic are proximity, porous boundary between states, and elitism. Conclusion: The paper advocates border settlement planning, review of housing standards, and advocacy for sanitation in different states. It therefore concludes that adequate urban planning in unison with economic and epidemiology techniques will provide a strong strategy for the management of the disease.


2019 ◽  
Author(s):  
Marwa Maweya Abdelbagi Elbasheer ◽  
Ayah Galal Abdelrahman Alkhidir ◽  
Siham Mohammed Awad Mohammed ◽  
Areej Abuelgasim Hassan Abbas ◽  
Aisha Osman Mohamed ◽  
...  

AbstractBackgroundBreast cancer is the most prevalent cancer among females worldwide including Sudan. The aim of this study was to determine the spatial distribution of breast cancer in Sudan.Materials and methodsA facility based cross-sectional study was implemented in eighteen histopathology laboratories distributed in the three localities of Khartoum State on a sample of 4630 Breast Cancer cases diagnosed during the period 2010-2016. A master database was developed through Epi Info™ 7.1.5.2 for computerizing the data collected: the facility name, type (public or private), and its geo- location (latitude and longitude). Personal data on patients were extracted from their respective medical records (name, age, marital status, ethnic group, State, locality, administrative unit, permanent address and phone number, histopathology diagnosis). The data was summarized through SPSS to generate frequency tables for estimating prevalence and the geographical information system (ArcGIS 10.3) was used to generate the epidemiological distribution maps. ArcGIS 10.3 spatial analysis features were used to develop risk maps based on the kriging method.ResultsBreast cancer prevalence was 3.9 cases per 100,000 female populations. Of the 4423 cases of breast cancer, invasive breast carcinoma of no special type (NST) was the most frequent (79.5%, 3517/4423) histopathological diagnosis. The spatial analysis indicated as high risk areas for breast cancer in Sudan the States of Nile River, Northern, Red Sea, White Nile, Northern and Southern Kordofan.ConclusionsThe attempt to develop a predictive map of breast cancer in Sudan revealed three levels of risk areas (risk, intermediate and high risk areas); regardless the risk level, appropriate preventive and curative health interventions with full support from decision makers are urgently needed.


2020 ◽  
Vol 10 (18) ◽  
pp. 6335 ◽  
Author(s):  
Kamila Pawluszek-Filipiak ◽  
Natalia Oreńczak ◽  
Marta Pasternak

To mitigate the negative effects of landslide occurrence, there is a need for effective landslide susceptibility mapping (LSM). The fundamental source for LSM is landslide inventory. Unfortunately, there are still areas where landslide inventories are not generated due to financial or reachability constraints. Considering this led to the following research question: can we model landslide susceptibility in an area for which landslide inventory is not available but where such is available for surrounding areas? To answer this question, we performed cross-modeling by using various strategies for landslide susceptibility. Namely, landslide susceptibility was cross-modeled by using two adjacent regions (“Łososina” and “Gródek”) separated by the Rożnów Lake and Dunajec River. Thus, 46% and 54% of the total detected landslides were used for the LSM in “Łososina” and “Gródek” model, respectively. Various topographical, geological, hydrological and environmental landslide-conditioning factors (LCFs) were created. These LCFs were generated on the basis of the Digital Elevation Model (DEM), Sentinel-2A data, a digitized geological and soil suitability map, precipitation, the road network and the Różnów lake shapefile. For LSM, we applied the Frequency Ratio (FR) and Landslide Susceptibility Index (LSI) methods. Five zones showing various landslide susceptibilities were generated via Natural Jenks. The Seed Cell Area Index (SCAI) and Relative Landslide Density Index were used for model validation. Even when the SCAI indicated extremely high values for “very low” susceptibility classes and very small values for “very high” susceptibility classes in the training and validation areas, the accuracy of the LSM in the validation areas was significantly lower. In the “Łososina” model, 90% and 57% of the landslides fell into the “high” and “very high” susceptibility zones in the training and validation areas, respectively. In the “Gródek” model, 86% and 46% of the landslides fell into the “high” and “very high” susceptibility zones in the training and validation areas, respectively. Moreover, the comparison between these two models was performed. Discrepancies between these two models exist in the areas of critical geological structures (thrust and fault proximity), and the reliability for such susceptibility zones can be low (2–3 susceptibility zone difference). However, such areas cover only 11% of the analyzed area; thus, we can conclude that in remaining regions (89%), LSM generated by the inventory for the surrounding area can be useful. Therefore, the low reliability of such a map in areas of critical geological structures should be borne in mind.


Sign in / Sign up

Export Citation Format

Share Document