High-Precision Potential Evapotranspiration Model Using GNSS Observation

2021 ◽  
Vol 13 (23) ◽  
pp. 4848
Author(s):  
Qingzhi Zhao ◽  
Tingting Sun ◽  
Tengxu Zhang ◽  
Lin He ◽  
Zhiyi Zhang ◽  
...  

Potential evapotranspiration (PET) can reflect the characteristics of drought change in different time scales and is the key parameter for calculating the standardized precipitation evapotranspiration index (SPEI). The Thornthwaite (TH) and Penman–Monteith (PM) models are generally used to calculate PET, but the precision of PET derived from the TH model is poor, and a large number of meteorological parameters are required to evaluate the PM model. To obtain high-precision PET with fewer meteorological parameters, a high-precision PET (HPET) model is proposed to calculate PET by introducing precipitable water vapor (PWV) from Global Navigation Satellite System (GNSS) observation. The PET difference (DPET) between TH- and PM-derived PET was calculated first. Then, the relationship between the DPET and GNSS-derived PWV/temperature was analysed, and a piecewise linear regression model was calculated to fit the DPET. Finally, the HPET model was established by adding the fitted DPET to the initial PET derived from the TH model. The Loess Plateau (LP) was selected as the experiment area, and the statistical results show the satisfactory performance of the proposed HPET model. The averaged root mean square (RMS) of the HPET model over the whole LP area is 8.00 mm, whereas the values for the TH and revised TH (RTH) models are 34.25 and 12.55 mm, respectively, when the PM-derived PET is regarded as the reference. Compared with the TH and RTH models, the average improvement rates of the HPET model over the whole LP area are 77.5 and 40.5%, respectively. In addition, the HPET-derived SPEI is better than that of the TH and RTH models at different month scales, with average improvement rates of 49.8 and 23.1%, respectively, over the whole LP area. Such results show the superiority of the proposed HPET model to the existing PET models.

2021 ◽  
Vol 13 (3) ◽  
pp. 350
Author(s):  
Rosa Delia García ◽  
Emilio Cuevas ◽  
Victoria Eugenia Cachorro ◽  
Omaira E. García ◽  
África Barreto ◽  
...  

Precipitable water vapor retrievals are of major importance for assessing and understanding atmospheric radiative balance and solar radiation resources. On that basis, this study presents the first PWV values measured with a novel EKO MS-711 grating spectroradiometer from direct normal irradiance in the spectral range between 930 and 960 nm at the Izaña Observatory (IZO, Spain) between April and December 2019. The expanded uncertainty of PWV (UPWV) was theoretically evaluated using the Monte-Carlo method, obtaining an averaged value of 0.37 ± 0.11 mm. The estimated uncertainty presents a clear dependence on PWV. For PWV ≤ 5 mm (62% of the data), the mean UPWV is 0.31 ± 0.07 mm, while for PWV > 5 mm (38% of the data) is 0.47 ± 0.08 mm. In addition, the EKO PWV retrievals were comprehensively compared against the PWV measurements from several reference techniques available at IZO, including meteorological radiosondes, Global Navigation Satellite System (GNSS), CIMEL-AERONET sun photometer and Fourier Transform Infrared spectrometry (FTIR). The EKO PWV values closely align with the above mentioned different techniques, providing a mean bias and standard deviation of −0.30 ± 0.89 mm, 0.02 ± 0.68 mm, −0.57 ± 0.68 mm, and 0.33 ± 0.59 mm, with respect to the RS92, GNSS, FTIR and CIMEL-AERONET, respectively. According to the theoretical analysis, MB decreases when comparing values for PWV > 5 mm, leading to a PWV MB between −0.45 mm (EKO vs. FTIR), and 0.11 mm (EKO vs. CIMEL-AERONET). These results confirm that the EKO MS-711 spectroradiometer is precise enough to provide reliable PWV data on a routine basis and, as a result, can complement existing ground-based PWV observations. The implementation of PWV measurements in a spectroradiometer increases the capabilities of these types of instruments to simultaneously obtain key parameters used in certain applications such as monitoring solar power plants performance.


2021 ◽  
Vol 13 (10) ◽  
pp. 1981
Author(s):  
Ruike Ren ◽  
Hao Fu ◽  
Hanzhang Xue ◽  
Zhenping Sun ◽  
Kai Ding ◽  
...  

High-precision 3D maps play an important role in autonomous driving. The current mapping system performs well in most circumstances. However, it still encounters difficulties in the case of the Global Navigation Satellite System (GNSS) signal blockage, when surrounded by too many moving objects, or when mapping a featureless environment. In these challenging scenarios, either the global navigation approach or the local navigation approach will degenerate. With the aim of developing a degeneracy-aware robust mapping system, this paper analyzes the possible degeneration states for different navigation sources and proposes a new degeneration indicator for the point cloud registration algorithm. The proposed degeneracy indicator could then be seamlessly integrated into the factor graph-based mapping framework. Extensive experiments on real-world datasets demonstrate that the proposed 3D reconstruction system based on GNSS and Light Detection and Ranging (LiDAR) sensors can map challenging scenarios with high precision.


2019 ◽  
Vol 54 (3) ◽  
pp. 97-112
Author(s):  
Mostafa Hamed ◽  
Ashraf Abdallah ◽  
Ashraf Farah

Abstract Nowadays, Precise Point Positioning (PPP) is a very popular technique for Global Navigation Satellite System (GNSS) positioning. The advantage of PPP is its low cost as well as no distance limitation when compared with the differential technique. Single-frequency receivers have the advantage of cost effectiveness when compared with the expensive dual-frequency receivers, but the ionosphere error makes a difficulty to be completely mitigated. This research aims to assess the effect of using observations from both GPS and GLONASS constellations in comparison with GPS only for kinematic purposes using single-frequency observations. Six days of the year 2018 with single-frequency data for the Ethiopian IGS station named “ADIS” were processed epoch by epoch for 24 hours once with GPS-only observations and another with GPS/GLONASS observations. In addition to “ADIS” station, a kinematic track in the New Aswan City, Aswan, Egypt, has been observed using Leica GS15, geodetic type, dual-frequency, GPS/GLONASS GNSS receiver and single-frequency data have been processed. Net_Diff software was used for processing all the data. The results have been compared with a reference solution. Adding GLONASS satellites significantly improved the satellite number and Position Dilution Of Precision (PDOP) value and accordingly improved the accuracy of positioning. In the case of “ADIS” data, the 3D Root Mean Square Error (RMSE) ranged between 0.273 and 0.816 m for GPS only and improved to a range from 0.256 to 0.550 m for GPS/GLONASS for the 6 processed days. An average improvement ratio of 24%, 29%, 30%, and 29% in the east, north, height, and 3D position components, respectively, was achieved. For the kinematic trajectory, the 3D position RMSE improved from 0.733 m for GPS only to 0.638 m for GPS/GLONASS. The improvement ratios were 7%, 5%, 28%, and 13% in the east, north, height, and 3D position components, respectively, for the kinematic trajectory data. This opens the way to add observations from the other two constellations (Galileo and BeiDou) for more accuracy in future research.


2019 ◽  
Vol 11 (7) ◽  
pp. 787 ◽  
Author(s):  
Jing Qiao ◽  
Wu Chen ◽  
Shengyue Ji ◽  
Duojie Weng

The geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites of the Beidou navigation satellite system are maneuvered frequently. The broadcast ephemeris can be interrupted for several hours after the maneuver. The orbit-only signal-in-space ranging errors (SISREs) of broadcast ephemerides available after the interruption are over two times larger than the errors during normal periods. To shorten the interruption period and improve the ephemeris accuracy, we propose a two-step orbit recovery strategy based on a piecewise linear thrust model. The turning points of the thrust model are firstly determined by comparison of the kinematic orbit with an integrated orbit free from maneuver; afterward, precise orbit determination (POD) is conducted for the maneuvered satellite by estimating satellite orbital and thrust parameters simultaneously. The observations from the IGS Multi-Global Navigation Satellite System (GNSS) Experiment (MGEX) network and ultra-rapid products of the German Research Center for Geosciences (GFZ) are used for orbit determination of maneuvered satellites from Sep to Nov 2017. The results show that for the rapidly recovered ephemerides, the average orbit-only SISREs are 1.15 and 1.0 m 1 h after maneuvering for GEO and IGSO respectively, which is comparable to the accuracy of Beidou broadcast ephemerides in normal cases.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5578
Author(s):  
Fangzhao Zhang ◽  
Jean-Pierre Barriot ◽  
Guochang Xu ◽  
Marania Hopuare

Since Bevis first proposed Global Positioning System (GPS) meteorology in 1992, the precipitable water (PW) estimates retrieved from Global Navigation Satellite System (GNSS) networks with high accuracy have been widely used in many meteorological applications. The proper estimation of GNSS PW can be affected by the GNSS processing strategy as well as the local geographical properties of GNSS sites. To better understand the impact of these factors, we compare PW estimates from two nearby permanent GPS stations (THTI and FAA1) in the tropical Tahiti Island, a basalt shield volcano located in the South Pacific, with a mean slope of 8% and a diameter of 30 km. The altitude difference between the two stations is 86.14 m, and their horizontal distance difference is 2.56 km. In this paper, Bernese GNSS Software Version 5.2 with precise point positioning (PPP) and Vienna mapping function 1 (VMF1) was applied to estimate the zenith tropospheric delay (ZTD), which was compared with the International GNSS Service (IGS) Final products. The meteorological parameters sourced from the European Center for Medium-Range Weather Forecasts (ECMWF) and the local weighted mean temperature ( T m ) model were used to estimate the GPS PW for three years (May 2016 to April 2019). The results show that the differences of PW between two nearby GPS stations is nearly a constant with value 1.73 mm. In our case, this difference is mainly driven by insolation differences, the difference in altitude and the wind being only second factors.


2020 ◽  
Vol 12 (21) ◽  
pp. 3584
Author(s):  
Fei Ye ◽  
Yunbin Yuan ◽  
Zhiguo Deng

Errors in ultra-rapid UT1-UTC primarily affect the overall rotation of spatial datum expressed by GNSS (Global Navigation Satellite System) satellite ultra-rapid orbit. In terms of existing errors of traditional strategy, e.g., piecewise linear functions, for ultra-rapid UT1-UTC determination, and the requirement to improve the accuracy and consistency of ultra-rapid UT1-UTC, the potential to improve the performance of ultra-rapid UT1-UTC determination based on an LS (Least Square) + AR (Autoregressive) combination model is explored. In this contribution, based on the LS+AR combination model and by making joint post-processing/rapid UT1-UTC observation data, we propose a new strategy for ultra-rapid UT1-UTC determination. The performance of the new strategy is subsequently evaluated using data provided by IGS (International GNSS Services), iGMAS (international GNSS Monitoring and Assessment System), and IERS (International Earth Rotation and Reference Systems Service). Compared to the traditional strategy, the numerical results over more than 1 month show that the new strategy improved ultra-rapid UT1-UTC determination by 29–43%. The new strategy can provide a reference for GNSS data processing to improve the performance of ultra-rapid products.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Chenglong Chu ◽  
Na Xie ◽  
Xiqun Chen ◽  
Yuxin Wu ◽  
Xiaoxiao Sun

A modified cell transmission model (CTM) is proposed to depict the temporal-spatial evolution of traffic congestion on urban freeways. Specifically, drivers’ adaptive behaviors and the corresponding influence on traffic flows are emphasized. Two piecewise linear regression models are proposed to describe the relationship of flow and density (occupancy). Several types of cellular connections are designed to depict urban rapid roads with on/off-ramps and junctions. Based on the data collected on freeway of Queen Elizabeth, Ontario, Canada, we show that the new model provides a relatively higher accuracy of temporal-spatial evolution of traffic congestions.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2526 ◽  
Author(s):  
Fei Yang ◽  
Jiming Guo ◽  
Junbo Shi ◽  
Lv Zhou ◽  
Yi Xu ◽  
...  

Water vapor is an important driving factor in the related weather processes in the troposphere, and its temporal-spatial distribution and change are crucial to the formation of cloud and rainfall. Global Navigation Satellite System (GNSS) water vapor tomography, which can reconstruct the water vapor distribution using GNSS observation data, plays an increasingly important role in GNSS meteorology. In this paper, a method to improve the distribution of observations in GNSS water vapor tomography is proposed to overcome the problem of the relatively concentrated distribution of observations, enable satellite signal rays to penetrate more tomographic voxels, and improve the issue of overabundance of zero elements in a tomographic matrix. Numerical results indicate that the accuracy of the water vapor tomography is improved by the proposed method when the slant water vapor calculated by GAMIT is used as a reference. Comparative results of precipitable water vapor (PWV) and water vapor density (WVD) profiles from radiosonde station data indicate that the proposed method is superior to the conventional method in terms of the mean absolute error (MAE), standard deviations (STD), and root-mean-square error (RMS). Further discussion shows that the ill-condition of tomographic equation and the richness of data in the tomographic model need to be discussed separately.


2021 ◽  
Vol 8 ◽  
Author(s):  
Junyu Pei ◽  
Xiaopu Wang ◽  
Pengfei Chen ◽  
Keyang Zheng ◽  
Xinqun Hu

Background: Women had worse outcomes after acute myocardial infarction (AMI), and physiologically, women had lower hemoglobin values. We examined whether there were sex-related differences in the relationship between hemoglobin levels and adverse outcomes in patients with acute myocardial infarction.Method: We conducted a post-hoc analysis of data from the Acute Coronary Syndrome Quality Improvement in Kerala (ACS-QUIK) Study. We explored the relationship between baseline hemoglobin level and 30-days adverse outcomes by logistic regression model, generalized additive model (GAM) and two-piecewise linear regression model. We used multiple imputation, based on five replications and a chained equation approach method in the R multiple imputation procedure, to account for missing data. The primary outcome were 30-day major adverse cardiovascular events (MACEs) defined as death, reinfarction, stroke, and major bleeding. The secondary outcomes were 30-day major bleeding, 30-day stroke and 30-day cardiovascular death (CVD death).Results: Twenty thousand, five hundred fifty-nine patients with AMI were included in our analysis. Baseline hemoglobin level was associated with major bleeding [OR: 0.74, 95%CI (0.60, 0.92) P < 0.01], CVD death [OR: 0.94, 95%CI (0.90, 0.99) P < 0.01], and MACEs [OR: 0.95, 95%CI (0.92, 0.99) P < 0.01]. There was no significant relationship between baseline hemoglobin level and stroke incidence in both men [OR: 1.02, 95%CI (0.90, 1.14) P = 0.77] and women [OR: 1.15, 95%CI (0.96, 1.37) P = 0.18]. Baseline hemoglobin level was associated with major bleeding [OR: 0.71, 95%CI (0.58, 0.85) P < 0.01] in male patients, however we did not find the same relationship in female patients [OR: 0.89, 95%CI (0.56, 1.41) P = 0.61]. GAM and two-piecewise linear regression model showed the relationships of hemoglobin level with major bleeding, CVD death, and MACEs were non-linear (non-linear P < 0.05), and the threshold value were 13, 14.8, and 14.3 g/dL for MACEs and CVD death, respectively.Conclusion: Baseline hemoglobin level was one of the independent predictors of prognosis in South Asia patients with acute myocardial infarction. Moreover, its impact on prognosis was largely different depending on the patients' sex.


2021 ◽  
Vol 17 (4) ◽  
pp. 60
Author(s):  
Nor Azme Nordin ◽  
Noraishah Mustapa ◽  
Asiah Abdul Satar

Abstract: Insfrastructure development require significant changes and transformation in Geomatics field for the upcoming decade. The use of new technology in Geomatics and surveying is essential and can be leveraged in many survey application that will help on building the nation towards a sustainable future. In the last 5 years, GNSS technology has been widely used and practiced to replace total station for survey work. Main factors that contributes to this busniness changes are the availability of much cheaper equipment with good technical capability in the market that helps surveyor to perform their work faster and more efficient. Global navigation satellite system services for accurate positioning has also rapidly increased and provide many option and solution for industry player or surveyor to choose. Combination of multiple global navigation satellite system providers such as GPS, GALILEO,GLONASS and BeiDOU has developed good satellite networks and increased numbers of available satellites for observation that improve absolute position accuracy. CHC i70 is among the best selling GNSS model on the market right now. The receiver can receive signal from GPS,GALILEO,GLONASS and BeiDOU simultaneously. This study will outline and focus on the capability of the RTK-Based method ( 30 second to 1 minute observation period) using CHC i70 instrument in high-precision measurement work. The research was done using the GPS calibration test site at Politeknik Sultan Haji Ahmad Shah (POLISAS) and was also practiced in the actual work for establishment of Temporary Bench Mark (TBM) along Jalan Melor to Ketereh, Kelantan. The result of the study found that RTK-Based method can meet the precision work that is permitted under 2cm accuracy. Studies show that the method of using RTK- Based is suitable for high precision work and improve the measurement time and work duration at field.   Keywords : Beidou, Chc and RTK-Based GPS and PDOP


Sign in / Sign up

Export Citation Format

Share Document