scholarly journals Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils

Sensors ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. 586 ◽  
Author(s):  
Jon Mabe ◽  
Joseba Zubia ◽  
Eneko Gorritxategi
2007 ◽  
Author(s):  
Andrew L. Clow ◽  
Rainer Künnemeyer ◽  
Paul Gaynor ◽  
John C. Sharpe

2020 ◽  
Vol 151 ◽  
pp. 106379
Author(s):  
Yeping Peng ◽  
Junhao Cai ◽  
Tonghai Wu ◽  
Guangzhong Cao ◽  
Ngaiming Kwok ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 145 ◽  
Author(s):  
Javier Toledo ◽  
Víctor Ruiz-Díez ◽  
Maik Bertke ◽  
Hutomo Suryo Wasisto ◽  
Erwin Peiner ◽  
...  

In this work, we demonstrate the potential of a piezoelectric resonator for developing a low-cost sensor system to detect microscopic particles in real-time, which can be present in a wide variety of environments and workplaces. The sensor working principle is based on the resonance frequency shift caused by particles collected on the resonator surface. To test the sensor sensitivity obtained from mass-loading effects, an Aluminum Nitride-based piezoelectric resonator was exposed to cigarette particles in a sealed chamber. In order to determine the resonance parameters of interest, an interface circuit was implemented and included within both open-loop and closed-loop schemes for comparison. The system was capable of tracking the resonance frequency with a mass sensitivity of 8.8 Hz/ng. Although the tests shown here were proven by collecting particles from a cigarette, the results obtained in this application may have interest and can be extended towards other applications, such as monitoring of nanoparticles in a workplace environment.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3162 ◽  
Author(s):  
Ran Jia ◽  
Biao Ma ◽  
Changsong Zheng ◽  
Xin Ba ◽  
Liyong Wang ◽  
...  

The electromagnetic wear particle detector has been widely studied due to its prospective applications in various fields. In order to meet the requirements of the high-precision wear particle detector, a comprehensive method of improving the sensitivity and detectability of the sensor is proposed. Based on the nature of the sensor, parallel resonant exciting coils are used to increase the impedance change of the exciting circuit caused by particles, and the serial resonant topology structure and an amorphous core are applied to the inductive coil, which improves the magnetic flux change of the inductive coil and enlarges the induced electromotive force of the sensor. Moreover, the influences of the resonance frequency on the sensitivity and effective particle detection range of the sensor are studied, which forms the basis for optimizing the frequency of the magnetic field within the sensor. For further improving the detectability of micro-particles and the real-time monitoring ability of the sensor, a simple and quick extraction method for the particle signal, based on a modified lock-in amplifier and empirical mode decomposition and reverse reconstruction (EMD-RRC), is proposed, which can effectively extract the particle signal from the raw signal with low signal-to-noise ratio (SNR). The simulation and experimental results show that the proposed methods improve the sensitivity of the sensor by more than six times.


2014 ◽  
Vol 687-691 ◽  
pp. 3787-3790 ◽  
Author(s):  
Li Jiang

Modern micro sensor has low cost, low power characteristic, it can realize the wireless communication and computing performance, a large number of the sensors organizations constitute the wireless sensor network. This paper realized the design of wireless sensor network positioning system based on CC2430 using Zigbee technology and RSSI ranging technology. Through the experiment test, the technology improved fixed position accuracy and resistance to environment base on RSSI calculate method.


2006 ◽  
Vol 951 ◽  
Author(s):  
Huihua Shu ◽  
Jiehui Wan ◽  
John Shu ◽  
Hong Yang ◽  
Bryan A. Chin

ABSTRACTA passive chemiresistor micro-sensor was investigated for the detection of hydrazine compounds. Hydrazine compounds are a highly toxic and carcinogenic species exhibiting toxic effects in humans at very low levels of exposure. Therefore, a sensor capable of detecting ppb levels of hydrazine compounds is required to insure the safety of personnel. The present study describes the fabrication, testing, and characterization of a low-cost, ultrasensitive Poly (3-Hexylthiophene) (P3HT) thin film-based micro-sensor for the detection of hydrazine compounds. Standard microelectronic manufacturing techniques were used to form a micro-sensor composed of a silicon substrate, interdigitated gold electrodes, and P3HT sensing film. Responses of the micro-sensor to hydrazine compounds at different temperatures and concentration levels are reported. When exposed to 25 ppm hydrazine in nitrogen, the sensor's resistance was measured to change from a few ohms to over 10 Megaohms. The thermal stability of the P3HT micro-sensor and the method to improve thermal stability are also explored. Thermally annealing the P3HT micro-sensor was found to improve thermal stability at high temperatures. Moreover, the sensor exhibits good specificity to hydrazine and does not respond to the presence of NO2 and/or N2O.


Author(s):  
F. Guo ◽  
H. Zhou ◽  
J. Wei ◽  
Z. Wei

With the wide applications of Internet of Things technology, the design and fabrication of small size sensor nodes with high sensitivity at low cost will be the main direction of development. In this paper, the important design requirements and design drivers for the manufacturing of wireless micro sensor node based on printed electronics technology are analysed and reviewed. The micro-sensor nodes fabricated can be powered with solar cell. The production cost could be effectively reduced and the life of the system is extended. The sensor nodes could be widely used for real-time monitoring in wide areas.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Florentin M. J. Bulot ◽  
Steven J. Johnston ◽  
Philip J. Basford ◽  
Natasha H. C. Easton ◽  
Mihaela Apetroaie-Cristea ◽  
...  

Abstract Exposure to ambient particulate matter (PM) air pollution is a leading risk factor for morbidity and mortality, associated with up to 8.9 million deaths/year worldwide. Measurement of personal exposure to PM is hindered by poor spatial resolution of monitoring networks. Low-cost PM sensors may improve monitoring resolution in a cost-effective manner but there are doubts regarding data reliability. PM sensor boxes were constructed using four low-cost PM micro-sensor models. Three boxes were deployed at each of two schools in Southampton, UK, for around one year and sensor performance was analysed. Comparison of sensor readings with a nearby background station showed moderate to good correlation (0.61 < r < 0.88, p < 0.0001), but indicated that low-cost sensor performance varies with different PM sources and background concentrations, and to a lesser extent relative humidity and temperature. This may have implications for their potential use in different locations. Data also indicates that these sensors can track short-lived events of pollution, especially in conjunction with wind data. We conclude that, with appropriate consideration of potential confounding factors, low-cost PM sensors may be suitable for PM monitoring where reference-standard equipment is not available or feasible, and that they may be useful in studying spatially localised airborne PM concentrations.


Sign in / Sign up

Export Citation Format

Share Document