scholarly journals Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3761 ◽  
Author(s):  
Mads Jochumsen ◽  
Sylvain Cremoux ◽  
Lucien Robinault ◽  
Jimmy Lauber ◽  
Juan Arceo ◽  
...  

Brain-computer interfaces (BCIs) can be used to induce neural plasticity in the human nervous system by pairing motor cortical activity with relevant afferent feedback, which can be used in neurorehabilitation. The aim of this study was to identify the optimal type or combination of afferent feedback modalities to increase cortical excitability in a BCI training intervention. In three experimental sessions, 12 healthy participants imagined a dorsiflexion that was decoded by a BCI which activated relevant afferent feedback: (1) electrical nerve stimulation (ES) (peroneal nerve—innervating tibialis anterior), (2) passive movement (PM) of the ankle joint, or (3) combined electrical stimulation and passive movement (Comb). The cortical excitability was assessed with transcranial magnetic stimulation determining motor evoked potentials (MEPs) in tibialis anterior before, immediately after and 30 min after the BCI training. Linear mixed regression models were used to assess the changes in MEPs. The three interventions led to a significant (p < 0.05) increase in MEP amplitudes immediately and 30 min after the training. The effect sizes of Comb paradigm were larger than ES and PM, although, these differences were not statistically significant (p > 0.05). These results indicate that the timing of movement imagery and afferent feedback is the main determinant of induced cortical plasticity whereas the specific type of feedback has a moderate impact. These findings can be important for the translation of such a BCI protocol to the clinical practice where by combining the BCI with the already available equipment cortical plasticity can be effectively induced. The findings in the current study need to be validated in stroke populations.

2019 ◽  
Vol 9 (6) ◽  
pp. 127 ◽  
Author(s):  
Mads Jochumsen ◽  
Muhammad Samran Navid ◽  
Rasmus Wiberg Nedergaard ◽  
Nada Signal ◽  
Usman Rashid ◽  
...  

Brain–computer interfaces (BCIs), operated in a cue-based (offline) or self-paced (online) mode, can be used for inducing cortical plasticity for stroke rehabilitation by the pairing of movement-related brain activity with peripheral electrical stimulation. The aim of this study was to compare the difference in cortical plasticity induced by the two BCI modes. Fifteen healthy participants participated in two experimental sessions: cue-based BCI and self-paced BCI. In both sessions, imagined dorsiflexions were extracted from continuous electroencephalogram (EEG) and paired 50 times with the electrical stimulation of the common peroneal nerve. Before, immediately after, and 30 min after each intervention, the cortical excitability was measured through the motor-evoked potentials (MEPs) of tibialis anterior elicited through transcranial magnetic stimulation. Linear mixed regression models showed that the MEP amplitudes increased significantly (p < 0.05) from pre- to post- and 30-min post-intervention in terms of both the absolute and relative units, regardless of the intervention type. Compared to pre-interventions, the absolute MEP size increased by 79% in post- and 68% in 30-min post-intervention in the self-paced mode (with a true positive rate of ~75%), and by 37% in post- and 55% in 30-min post-intervention in the cue-based mode. The two modes were significantly different (p = 0.03) at post-intervention (relative units) but were similar at both post timepoints (absolute units). These findings suggest that immediate changes in cortical excitability may have implications for stroke rehabilitation, where it could be used as a priming protocol in conjunction with another intervention; however, the findings need to be validated in studies involving stroke patients.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S111-S112
Author(s):  
Benjamin Pross ◽  
Patrick Schulz ◽  
Duygu Güler ◽  
Irina Papazova ◽  
Elias Wagner ◽  
...  

Abstract Background Cortical plasticity – the ability to reorganize synaptic connections and adapt to environmental changes – appears to be impaired in schizophrenia patients. Results suggest the dysfunctional plasticity to be a key pathophysiological mechanism. Different non-invasive brain stimulation (NIBS) techniques have been used to modulate and induce cortical plasticity. In healthy subjects, nicotine was shown to play an important role in plasticity induction and is capable to alter cortical excitability and plasticity, induced by NIBS techniques. Our goal was to investigate the promising effects of a nicotine receptor activation done by Varenicline and the combination with anodal transcranial direct current stimulation (a-tDCS) on neuroplastic changes in schizophrenia patients. Methods Our sample consisted out of twenty-four individuals with schizophrenia, twelve smokers and twelve non-smokers. Every participant received Varenicline and Placebo, combined with anodal transcranial direct current stimulation (a-tDCS), to induce non-focal plasticity. We inferred plasticity changes by monitoring changes in cortical excitability. This was done via motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS). The MEPs were recorded before and three hours after Varenicline/Placebo intake. Following the direct current stimulation, we monitored excitability changes for up to one hour. Results Significant effects through the mere Varenicline consumption or withdrawal effects could not be found in any group. However, we observed a numeric temporary decrease of excitability after a-tDCS in non-smokers following Varenicline intake. This decrease compared to the placebo condition was visible 20 minutes after a-tDCS but vanished over time. Smokers did not show any excitability changes after a-tDCS and the nicotinic receptor stimulation did not show any influence. Excitability changes after stimulation in contrast to the baseline measurement were not evident. Discussion Our results show that an activation of nicotinic receptors in schizophrenia patients does not induce excitability changes. The modulating effect of nicotine in plasticity induction via anodal transcranial direct current stimulation could not be confirmed for patients with schizophrenia. We could show that chronic nicotine consumption in patients with schizophrenia or nicotine withdrawal does not lead to fundamental excitability changes. Acute nicotine consumption has only small effects on cortical excitability in non-smokers.


2009 ◽  
Vol 23 (5) ◽  
pp. 486-493 ◽  
Author(s):  
Jakob Udby Blicher ◽  
Johannes Jakobsen ◽  
Grethe Andersen ◽  
Jørgen Feldbæk Nielsen

Background. A possible role for GABA in regulating cortical plasticity after stroke has been proposed. Objective. To investigate changes in intracortical inhibitory and facilitatory circuits in the affected hemisphere more than 6 months after stroke, as well as modulation of excitability by a single training session. Methods. A total of 22 patients >6 months after stroke were compared to age- and gender-matched healthy participants. Cortical excitability was assessed by transcranial magnetic stimulation (TMS), including paired-pulse stimulation, before and up to 30 minutes after a single 15-minute session of 1 Hz thumb abduction-adduction movements. Results. At baseline, TMS showed decreased intracortical inhibition in the affected hemisphere of patients ( P = .004) compared to healthy participants. After training a short-lasting decline in motor evoked potentials was observed in both patients ( P = .002) and healthy participants ( P = .06). Moreover, in healthy participants, inhibitory activity decreased up to 30 minutes after training whereas no significant change was seen in the patients. Conclusions. The findings indicate that inhibitory intracortical circuits are less active after stroke, and no change in inhibitory activity is evident after a single training session. This may indicate that intracortical disinhibition is beneficial during recovery and that an impaired capacity for modulation remains in the chronic stage of stroke.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mitsuhiro Nito ◽  
Natsuki Katagiri ◽  
Kaito Yoshida ◽  
Tadaki Koseki ◽  
Daisuke Kudo ◽  
...  

Repetitive peripheral magnetic stimulation (rPMS) may improve motor function following central nervous system lesions, but the optimal parameters of rPMS to induce neural plasticity and mechanisms underlying its action remain unclear. We examined the effects of rPMS over wrist extensor muscles on neural plasticity and motor performance in 26 healthy volunteers. In separate experiments, the effects of rPMS on motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), direct motor response (M-wave), Hoffmann-reflex, and ballistic wrist extension movements were assessed before and after rPMS. First, to examine the effects of stimulus frequency, rPMS was applied at 50, 25, and 10 Hz by setting a fixed total number of stimuli. A significant increase in MEPs of wrist extensors was observed following 50 and 25 Hz rPMS, but not 10 Hz rPMS. Next, we examined the time required to induce plasticity by increasing the number of stimuli, and found that at least 15 min of 50 and 25 Hz rPMS was required. Based on these parameters, lasting effects were evaluated following 15 min of 50 or 25 Hz rPMS. A significant increase in MEP was observed up to 60 min following 50 and 25 Hz rPMS; similarly, an attenuation of SICI and enhancement of ICF were also observed. The maximal M-wave and Hoffmann-reflex did not change, suggesting that the increase in MEP was due to plastic changes at the motor cortex. This was accompanied by increasing force and electromyograms during wrist ballistic extension movements following 50 and 25 Hz rPMS. These findings suggest that 15 min of rPMS with 25 Hz or more induces an increase in cortical excitability of the relevant area rather than altering the excitability of spinal circuits, and has the potential to improve motor output.


2018 ◽  
Vol 32 (9) ◽  
pp. 777-787 ◽  
Author(s):  
Hongchae Baek ◽  
Ki Joo Pahk ◽  
Min-Ju Kim ◽  
Inchan Youn ◽  
Hyungmin Kim

Background. Stroke affects widespread brain regions through interhemispheric connections by influencing bilateral motor activity. Several noninvasive brain stimulation techniques have proved their capacity to compensate the functional loss by manipulating the neural activity of alternative pathways. Over the past few decades, brain stimulation therapies have been tailored within the theoretical framework of modulation of cortical excitability to enhance adaptive plasticity after stroke. Objective. However, considering the vast difference between animal and human cerebral cortical structures, it is important to approach specific neuronal target starting from the higher order brain structure for human translation. The present study focuses on stimulating the lateral cerebellar nucleus (LCN), which sends major cerebellar output to extensive cortical regions. Methods. In this study, in vivo stroke mouse LCN was exposed to low-intensity focused ultrasound (LIFU). After the LIFU exposure, animals underwent 4 weeks of rehabilitative training. Results. During the cerebellar LIFU session, motor-evoked potentials (MEPs) were generated in both forelimbs accompanying excitatory sonication parameter. LCN stimulation group on day 1 after stroke significantly enhanced sensorimotor recovery compared with the group without stimulation. The recovery has maintained for a 4-week period in 2 behavior tests. Furthermore, we observed a significantly decreased level of brain edema and tissue swelling in the affected hemisphere 3 days after the stroke. Conclusions. This study provides the first evidence showing that LIFU-induced cerebellar modulation could be an important strategy for poststroke recovery. A longer follow-up study is, however, necessary in order to fully confirm the effects of LIFU on poststroke recovery.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Turki Abualait ◽  
Sultan Alzahrani ◽  
Ahmed AlOthman ◽  
Fahad Abdulah Alhargan ◽  
Nouf Altwaijri ◽  
...  

Neural plasticity refers to the capability of the brain to modify its structure and/or function and organization in response to a changing environment. Evidence shows that disruption of neuronal plasticity and altered functional connectivity between distinct brain networks contribute significantly to the pathophysiological mechanisms of schizophrenia. Transcranial magnetic stimulation has emerged as a noninvasive brain stimulation tool that can be utilized to investigate cortical excitability with the aim of probing neural plasticity mechanisms. In particular, in pathological disorders, such as schizophrenia, cortical dysfunction, such as an aberrant excitatory-inhibitory balance in cortical networks, altered cortical connectivity, and impairment of critical period timing are very important to be studied using different TMS paradigms. Studying such neurophysiological characteristics and plastic changes would help in elucidating different aspects of the pathophysiological mechanisms underlying schizophrenia. This review attempts to summarize the findings of available TMS studies with diagnostic and characterization aims, but not with therapeutic purposes, in schizophrenia. Findings provide further evidence of aberrant excitatory-inhibitory balance in cortical networks, mediated by neurotransmitter pathways such as the glutamate and GABA systems. Future studies with combining techniques, for instance, TMS with brain imaging or molecular genetic typing, would shed light on the characteristics and predictors of schizophrenia.


2002 ◽  
Vol 92 (5) ◽  
pp. 2131-2138 ◽  
Author(s):  
Julia B. Pitcher ◽  
Timothy S. Miles

We aimed to determine whether postexercise depression of motor-evoked potentials (MEPs) could be demonstrated without voluntary muscle activation in humans. Voluntary fatigue was induced with a 2-min maximal voluntary contraction (MVC) of the first dorsal interosseous (FDI) muscle. On another occasion, “electrical fatigue” was induced with trains of shocks delivered for 2 min over the FDI motor point. Five of the twelve subjects also underwent “sequential fatigue” consisting of a 2-min MVC of FDI followed by 20 min of rest and then 2 min of motor point stimulation. Voluntary fatigue induced MEP depression that persisted for at least 20 min. Electrical fatigue induced a transient MEP facilitation that subsided 20 min after the stimulation and became depressed within 30 min. Thus MEP depression can be induced by both voluntary and electrical fatigue. With electrical fatigue, the initial depression is “masked” by transient MEP facilitation, reflecting cortical plasticity induced by the prolonged electrical stimulation. MEP depression probably reflects tonic afferent input from the exercising muscle that alters cortical excitability without altering spinal excitability.


2016 ◽  
Vol 224 (2) ◽  
pp. 102-111 ◽  
Author(s):  
Carsten M. Klingner ◽  
Stefan Brodoehl ◽  
Gerd F. Volk ◽  
Orlando Guntinas-Lichius ◽  
Otto W. Witte

Abstract. This paper reviews adaptive and maladaptive mechanisms of cortical plasticity in patients suffering from peripheral facial palsy. As the peripheral facial nerve is a pure motor nerve, a facial nerve lesion is causing an exclusive deefferentation without deafferentation. We focus on the question of how the investigation of pure deefferentation adds to our current understanding of brain plasticity which derives from studies on learning and studies on brain lesions. The importance of efference and afference as drivers for cortical plasticity is discussed in addition to the crossmodal influence of different competitive sensory inputs. We make the attempt to integrate the experimental findings of the effects of pure deefferentation within the theoretical framework of cortical responses and predictive coding. We show that the available experimental data can be explained within this theoretical framework which also clarifies the necessity for maladaptive plasticity. Finally, we propose rehabilitation approaches for directing cortical reorganization in the appropriate direction and highlight some challenging questions that are yet unexplored in the field.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hisato Nakazono ◽  
Katsuya Ogata ◽  
Akinori Takeda ◽  
Emi Yamada ◽  
Shinichiro Oka ◽  
...  

AbstractTranscranial alternating current stimulation (tACS) at 20 Hz (β) has been shown to modulate motor evoked potentials (MEPs) when paired with transcranial magnetic stimulation (TMS) in a phase-dependent manner. Repetitive paired-pulse TMS (rPPS) with I-wave periodicity (1.5 ms) induced short-lived facilitation of MEPs. We hypothesized that tACS would modulate the facilitatory effects of rPPS in a frequency- and phase-dependent manner. To test our hypothesis, we investigated the effects of combined tACS and rPPS. We applied rPPS in combination with peak or trough phase tACS at 10 Hz (α) or β, or sham tACS (rPPS alone). The facilitatory effects of rPPS in the sham condition were temporary and variable among participants. In the β tACS peak condition, significant increases in single-pulse MEPs persisted for over 30 min after the stimulation, and this effect was stable across participants. In contrast, β tACS in the trough condition did not modulate MEPs. Further, α tACS parameters did not affect single-pulse MEPs after the intervention. These results suggest that a rPPS-induced increase in trans-synaptic efficacy could be strengthened depending on the β tACS phase, and that this technique could produce long-lasting plasticity with respect to cortical excitability.


Author(s):  
Wakana Ishihara ◽  
Karen Moxon ◽  
Sheryl Ehrman ◽  
Mark Yarborough ◽  
Tina L. Panontin ◽  
...  

This systematic review addresses the plausibility of using novel feedback modalities for brain–computer interface (BCI) and attempts to identify the best feedback modality on the basis of the effectiveness or learning rate. Out of the chosen studies, it was found that 100% of studies tested visual feedback, 31.6% tested auditory feedback, 57.9% tested tactile feedback, and 21.1% tested proprioceptive feedback. Visual feedback was included in every study design because it was intrinsic to the response of the task (e.g. seeing a cursor move). However, when used alone, it was not very effective at improving accuracy or learning. Proprioceptive feedback was most successful at increasing the effectiveness of motor imagery BCI tasks involving neuroprosthetics. The use of auditory and tactile feedback resulted in mixed results. The limitations of this current study and further study recommendations are discussed.


Sign in / Sign up

Export Citation Format

Share Document