scholarly journals Effects of Acetone Vapor on the Exciton Band Photoluminescence Emission from Single- and Few-Layer WS2 on Template-Stripped Gold

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1913 ◽  
Author(s):  
Samantha Matthews ◽  
Chuan Zhao ◽  
Hao Zeng ◽  
Frank V. Bright

Two-dimensional (2D) materials are being used widely for chemical sensing applications due to their large surface-to-volume ratio and photoluminescence (PL) emission and emission exciton band tunability. To better understand how the analyte affects the PL response for a model 2D platform, we used atomic force microscopy (AFM) and co-localized photoluminescence (PL) and Raman mapping to characterize tungsten disulfide (WS2) flakes on template-stripped gold (TSG) under acetone challenge. We determined the PL-based response from single- and few-layer WS2 arises from three excitons (neutral, A0; biexciton, AA; and the trion, A−). The A0 exciton PL emission is the most strongly quenched by acetone whereas the A− PL emission exhibits an enhancement. We find the PL behavior is also WS2 layer number dependent.

2011 ◽  
Vol 239-242 ◽  
pp. 1781-1784
Author(s):  
Ting Wang ◽  
Li Guo

Cobalt oxyhydroxide nanocrystals were synthesized in an aqueous solution in the cavity of the apoferritin from horse spleen (HsAFr), and two-dimensional CoOOH-ferritin nanodots were prepared by simple touch method on modified silicon surface. In the synthesis, CoOOH nanocrystals are encapsulated and growth is restricted to the internal dimension of the protein cavity. The obtained nanodots were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), absorption and photoluminescence (PL) measurements. From the results, it was concluded that CoOOH nanocrystals were successfully synthesized in the core of ferritin and the monolayer of CoOOH-ferritin could be obtained on the surface of modified silicon surface. In addition, CoOOH quantum dots(QDs) in ferritin core provided the PL emission peak. Accordingly, the CoOOH-ferritin arrays can be employed as a potential useful biosensor material for PL technique.


2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


Author(s):  
Shunyu Chang ◽  
Yanquan Geng ◽  
Yongda Yan

AbstractAs one of the most widely used nanofabrication methods, the atomic force microscopy (AFM) tip-based nanomachining technique offers important advantages, including nanoscale manipulation accuracy, low maintenance cost, and flexible experimental operation. This technique has been applied to one-, two-, and even three-dimensional nanomachining patterns on thin films made of polymers, metals, and two-dimensional materials. These structures are widely used in the fields of nanooptics, nanoelectronics, data storage, super lubrication, and so forth. Moreover, they are believed to have a wide application in other fields, and their possible industrialization may be realized in the future. In this work, the current state of the research into the use of the AFM tip-based nanomachining method in thin-film machining is presented. First, the state of the structures machined on thin films is reviewed according to the type of thin-film materials (i.e., polymers, metals, and two-dimensional materials). Second, the related applications of tip-based nanomachining to film machining are presented. Finally, the current situation of this area and its potential development direction are discussed. This review is expected to enrich the understanding of the research status of the use of the tip-based nanomachining method in thin-film machining and ultimately broaden its application.


1999 ◽  
Vol 572 ◽  
Author(s):  
Stefan Zollner ◽  
Atul Konkar ◽  
R. B. Gregory ◽  
S. R. Wilson ◽  
S. A. Nikishin ◽  
...  

ABSTRACTWe measured the ellipsometric response from 0.7–5.4 eV of c-axis oriented AlN on Si (111) grown by molecular beam epitaxy. We determine the film thicknesses and find that for our AlN the refractive index is about 5–10% lower than in bulk AlN single crystals. Most likely, this discrepancy is due to a low film density (compared to bulk AlN), based on measurements using Rutherford backscattering. The films were also characterized using atomic force microscopy and x-ray diffraction to study the growth morphology. We find that AlN can be grown on Si (111) without buffer layers resulting in truely two-dimensional growth, low surface roughness, and relatively narrow x-ray peak widths.


2007 ◽  
Vol 14 (03) ◽  
pp. 439-444 ◽  
Author(s):  
Z. H. SUN ◽  
D. XU ◽  
G. W. YU ◽  
G. H. ZHANG ◽  
X. Q. WANG ◽  
...  

Single crystals of nonlinear optical material, L-arginine trifluoroacetate (abbreviated as LATF), were grown from an aqueous solution by the low temperature solution growth method. The cell parameters of the grown crystal were determined by the X-ray powder diffraction analysis. Atomic force microscopy (AFM) was used to investigate the surface morphology of {101} cleavage faces of LATF. Straight steps and two-dimensional nuclei were observed. Liquid inclusions and impurities as defects for revealing macrosteps were demonstrated. The molecular structure and crystal structure correlative with surface morphology were discussed.


1998 ◽  
Vol 05 (01) ◽  
pp. 387-392 ◽  
Author(s):  
D. Abriou ◽  
D. Gagnot ◽  
J. Jupille ◽  
F. Creuzet

The growth mode of silver films deposited at room temperature on TiO 2(110) surfaces has been examined by means of atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) in ultrahigh vacuum (UHV) conditions, On clean vacancy-free TiO 2(110) surfaces, 0.1-nm-thick (on average) Ag deposits form a two-dimensional (2D) layer. When the thickness of the silver overlayer is increased, 3D clusters are shown to appear while the 2D film is preserved, furthermore, the influence of surface oxygen vacancies on the growth of Ag/TiO 2(110) is evidenced by well-characterized differences in the morphology of 9-nm-thick silver deposits.


2018 ◽  
Vol 421 ◽  
pp. 134
Author(s):  
Hang Zhang ◽  
Junxiang Huang ◽  
Yongwei Wang ◽  
Rui Liu ◽  
Xiulan Huai ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1497
Author(s):  
Nurul Illya Muhamad Fauzi ◽  
Yap Wing Fen ◽  
Nur Alia Sheh Omar ◽  
Silvan Saleviter ◽  
Wan Mohd Ebtisyam Mustaqim Mohd Daniyal ◽  
...  

In this study, synthesis and characterization of chitosan/maghemite (Cs/Fe2O3) composites thin film has been described. Its properties were characterized using Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and ultraviolet-visible spectroscopy (UV-Vis). FTIR confirmed the existence of Fe–O bond, C–N bond, C–C bond, C–O bond, O=C=O bond and O–H bond in Cs/Fe2O3 thin film. The surface morphology of the thin film indicated the relatively smooth and homogenous thin film, and also confirmed the interaction of Fe2O3 with the chitosan. Next, the UV-Vis result showed high absorbance value with an optical band gap of 4.013 eV. The incorporation of this Cs/Fe2O3 thin film with an optical-based method, i.e., surface plasmon resonance spectroscopy showed positive response where mercury ion (Hg2+) can be detected down to 0.01 ppm (49.9 nM). These results validate the potential of Cs/Fe2O3 thin film for optical sensing applications in Hg2+ detection.


1996 ◽  
Vol 35 (Part 1, No. 12A) ◽  
pp. 6233-6238 ◽  
Author(s):  
Satomi Ohnishi ◽  
Masahiko Hara ◽  
Taiji Furuno ◽  
Hiroyuki Sasabe

Sign in / Sign up

Export Citation Format

Share Document