scholarly journals Online Estimation of the Current Ripple on a Saturating Ferrite-Core Inductor in a Boost Converter

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2921 ◽  
Author(s):  
Matteo Lodi ◽  
Alberto Oliveri

In this paper, a nonlinear observer is proposed for the estimation of the current ripple in a ferrite-core inductor working in partial saturation, mounted on a boost converter. The estimator is based on a recently proposed nonlinear inductance model, which expresses the inductance as a function of the inductor current, taking into account also the non-negligible effects of the core temperature. The proposed observer is implemented on a low-cost microcontroller and tested, both offline and online, on a real boost converter with different operating conditions. The offline tests show a satisfactory estimation accuracy both during the electrical (fast) and thermal (slow) transients. Due to the high microcontroller latency, some delays and inaccuracies occur during electrical transients in the online tests. This work suggests that, in order to exploit the observer for control purposes, the target architecture should be a high-performance microcontroller, a system-on-chip, or a field programmable gate array, where parallelism can be exploited to speed-up the computations. The proposed implementation can be instead suitable for switch-mode power supply (SMPS) monitoring purposes.

Author(s):  
Cindy X. Jiang ◽  
Tom T. Hartley ◽  
Joan E. Carletta

Hardware implementation of fractional-order differentiators and integrators requires careful consideration of issues of system quality, hardware cost, and speed. This paper proposes using field programmable gate arrays (FPGAs) to implement fractional-order systems, and demonstrates the advantages that FPGAs provide. As an illustration, the fundamental operators to a real power is approximated via the binomial expansion of the backward difference. The resulting high-order FIR filter is implemented in a pipelined multiplierless architecture on a low-cost Spartan-3 FPGA. Unlike common digital implementations in which all filter coefficients have the same word length, this approach exploits variable word length for each coefficient. Our system requires twenty percent less hardware than a system of comparable quality generated by Xilinx’s System Generator on its most area-efficient multiplierless setting. The work shows an effective way to implement a high quality, high throughput approximation to a fractional-order system, while maintaining less cost than traditional FPGA-based designs.


Author(s):  
A. F. H. A. Gani ◽  
A. A. Bakar ◽  
A. Ponniran ◽  
M. Hussainar ◽  
M. A. N. Amran

<p>The continuously increasing demand for control on electric power equipment has led to the rapid technological development in various applications such as renewable energy, electric drives, and communication. Pulse Width Modulation (PWM) switching is an important technique to control the output voltage. PWM signals can either be generated using digital controller or analog controller. Digital controllers are widely used to generate PWM signals due to their reliability in solving complex algorithms within short amount of time. Multiphase boost converter is capable to overcome high input current ripple, current stress and semiconductor losses in conventional boost converter. This paper proposes a PWM switching scheme for multiphase interleaved converter using Field Programmable Gate Array (FPGA). The proposed switching scheme uses PWM switching technique that is implemented by programming Altera DE2-70 board. The duty cycle can be easily adjusted using assigned switches on the Altera board. For validation, switching frequency was set to 100 kHz, and then switching signal was observed using oscilloscope.</p>


Proceedings ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 35 ◽  
Author(s):  
Vinh Ngo ◽  
David Castells-Rufas ◽  
Arnau Casadevall ◽  
Marc Codina ◽  
Jordi Carrabina

Pedestrian detection is one of the key problems in the emerging self-driving car industry. In addition, the Histogram of Gradients (HOG) algorithm proved to provide good accuracy for pedestrian detection. Many research works focused on accelerating HOG algorithm on FPGA (Field-Programmable Gate Array) due to its low-power and high-throughput characteristics. In this paper, we present an energy-efficient HOG-based implementation for pedestrian detection system on a low-cost FPGA system-on-chip platform. The hardware accelerator implements the HOG computation and the Support Vector Machine classifier, the rest of the algorithm is mapped to software in the embedded processor. The hardware runs at 50 Mhz (lower frequency than previous works), thus achieving the best pixels processed per clock and the lower power design.


2013 ◽  
Vol 849 ◽  
pp. 302-309
Author(s):  
Yun Xu ◽  
Xin Hua Zhu ◽  
Yu Wang

With rapid development of micro fabrication technology, the performance of MIMU has gradually improved. The MIMU introduced in this paper is based on the silicon micro machined gyroscope of type MSG7000D and accelerometer of type MSA6000. The volume of it is 3×3×3cm3, the mass is 68.5g and the power consumption is less than 1w. The experimental result shows that the bias stability of the gyroscope and accelerometer for each axis of the designed MIMU is less than 10°/h and 0.5mg respectively. For the non orthogonality in three axes of the structure, MIMU needs to be calibrated. After calibration, the measurement accuracy has improved by an order of magnitude. The designed MIMU can satisfy the requirement of high performance, low cost, light weight and small size for strap-down navigation system, thus it can be widely applied not only to the field of vehicles integrated navigation, attitude measurement but also to the fields of personal goods such as mobile, game consoles and so on.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chouki Balakishan ◽  
N. Sandeep ◽  
M. V. Aware

In many photovoltaic (PV) energy conversion systems, nonisolated DC-DC converters with high voltage gain are desired. The PV exhibits a nonlinear power characteristic which greatly depends on the environmental conditions. Hence in order to draw maximum available power various algorithms are used with PV voltage/current or both as an input for the maximum power point tracking (MPPT) controller. In this paper, golden section search (GSS) based MPPT control and its application with three-level DC-DC boost converter for MPPT are demonstrated. The three-level boost converter provides the high voltage transfer which enables the high power PV system to work with low size inductors with high efficiency. The balancing of the voltage across the two capacitors of the converter and MPPT is achieved using a simple duty cycle based voltage controller. Detailed simulation of three-level DC-DC converter topology with GSS algorithm is carried out in MATLAB/SIMULINK platform. The validation of the proposed system is done by the experiments carried out on hardware prototype of 100 W converter with low cost AT’mega328 controller as a core controller. From the results, the proposed system suits as one of the solutions for PV based generation system and the experimental results show high performance, such as a conversion efficiency of 94%.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 001948-001966 ◽  
Author(s):  
James J. Wang

Inductors directly on-chip was designed, processed and tested. Combining thick, electroplated gold used to produce LCD driver ICs plus gold wire bonding, toroidal inductors are formed directly on top of ICs. Both processes are production ready. One layouts inductor line segments on top of ICs and then complete loops using gold wire bonds at packaging. Two, 4, 8 or 16 toroids will fit inside thin QFN package. Cost to integrate 2 or more inductors is less than buying 0402 chip inductors and then soldering SMT components around ICs. Integrating inductors shrinks PCB board and allows IC design of filters, LC oscillator, EM noise suppression or ESD protection circuits. On-chip 4nH to 2000nH inductors is practical today. Choosing the magnetic core material and selecting the number of loops/turns, designers can integrate different inductors on top of an existing IC. Custom, ultra-tiny magnetic cores are produced from same magnetic materials that are inside discrete inductors or transformers. 50nH to 500nH inductors with Q comparable to chip inductors are possible for MHz frequency ranges by selecting ferrite core. Using high permeability permalloy, one produces 200nH to 2000nH inductors or transformers directly on-chip. Flexibility is another advantage of on-chip Gold InductorsTM. By adjusting loop heights during wire bonding, one can adjust inductance value +- 100%. By laying out both primary and secondary coils around magnetic core, designers can choose to integrate transformer or inductors. Low cost, production processes, control with IC design, plus flexibility, one can begin to design and produce on-chip filters and transformers; achieving smaller electronics.


Energies ◽  
2016 ◽  
Vol 9 (10) ◽  
pp. 792 ◽  
Author(s):  
Long-Yi Chang ◽  
Jung-Hao Chang ◽  
Kuei-Hsiang Chao ◽  
Yi-Nung Chung

Circuit World ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chen Kuilin ◽  
Feng Xi ◽  
Fu Yingchun ◽  
Liu Liang ◽  
Feng Wennan ◽  
...  

Purpose The data protection is always a vital problem in the network era. High-speed cryptographic chip is an important part to ensure data security in information interaction. This paper aims to provide a new peripheral component interconnect express (PCIe) encryption card solution with high performance, high integration and low cost. Design/methodology/approach This work proposes a System on Chip architecture scheme of high-speed cryptographic chip for PCIe encryption card. It integrated CPU, direct memory access, the national and international cipher algorithm (data encryption standard/3 data encryption standard, Rivest–Shamir–Adleman, HASH, SM1, SM2, SM3, SM4, SM7), PCIe and other communication interfaces with advanced extensible interface-advanced high-performance bus three-level bus architecture. Findings This paper presents a high-speed cryptographic chip that integrates several high-speed parallel processing algorithm units. The test results of post-silicon sample shows that the high-speed cryptographic chip can achieve Gbps-level speed. That means only one single chip can fully meet the requirements of cryptographic operation performance for most cryptographic applications. Practical implications The typical application in this work is PCIe encryption card. Besides server’s applications, it can also be applied in terminal products such as high-definition video encryption, security gateway, secure routing, cloud terminal devices and industrial real-time monitoring system, which require high performance on data encryption. Social implications It can be well applied on many other fields such as power, banking, insurance, transportation and e-commerce. Originality/value Compared with the current strategy of high-speed encryption card, which mostly uses hardware field-programmable gate arrays or several low-speed algorithm chips through parallel processing in one printed circuit board, this work has provided a new PCIe encryption card solution with high performance, high integration and low cost only in one chip.


2020 ◽  
Vol 63 (2) ◽  
pp. 325-337
Author(s):  
Lei Zhou ◽  
Zhengjun Qiu ◽  
Yong He

HighlightsA quick solution for developing and deploying custom agricultural IoT systems is proposed.Low-cost and high-performance devices are used for the design of sensor nodes.A mobile application based on WeChat Mini-Program is developed for device and data management.The proposed system brings convenience to both users and developers.Abstract. Increasing demand for automatic management of agricultural production and real-time remote monitoring has increased the need for smart devices, wireless technologies, and sensors. The internet of things (IoT) has emerged as a common technology for the management of multiple devices by multiple users. Some professional solutions are relatively difficult to implement for researchers who are interested in agricultural IoT but do not have requisite skills in computers and electronics. The unfriendliness of the user software limits the practical application of agricultural IoT in China. This article presents a simple solution based on an SoC (system-on-chip) and WeChat mini-program that focuses on low-cost hardware, rapid development, user-friendly application design, and helping developers get a quick start in building a DIY monitoring system. The ESP8266, a high-performance SoC, is used as the microcontroller and Wi-Fi module to transfer the sensor data to a remote server. A WeChat mini-program provides the graphical user interface, enabling users to manage devices and access data by clicking. Users can log into the system using their WeChat accounts and bind devices by scanning QR codes on the devices. Thus, the complex management and device binding in conventional systems can be overcome. The system is easy to be expand and has great potential for greenhouse environmental monitoring in China. Keywords: Greenhouse ambient monitoring, Internet of things, WeChat mini-program, Wi-Fi SoC.


Sign in / Sign up

Export Citation Format

Share Document