scholarly journals Alginate Hydrogel-Embedded Capillary Sensor for Quantitative Immunoassay with Naked Eye

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4831 ◽  
Author(s):  
Wenshu Zheng ◽  
Cen Gao ◽  
Liheng Shen ◽  
Chang Qu ◽  
Xuan Zhang ◽  
...  

We have developed an alginate hydrogel-embedded capillary sensor (AHCS) for naked eye-based quantification of immunoassay. Alkaline phosphatase (ALP) can modulate gel-sol transformation to increase the permeability of Cu2+-cross-linked alginate hydrogel film in the AHCS, followed by solution exchange into the capillary. Through measuring the length of the liquid phase of the microfluidics in the capillary at a given time, the concentration of the ALP could be quantified with the naked eye. Since ALP is widely applied as a signal reporter for immunoassays, the AHCS could easily accommodate conventional immune sensing platforms. We justify the practicality of AHCS with hepatitis B virus surface antigen (HBsAg) in serum samples and got comparable results with commercialized immunoassay. This AHCS is easy to make and use, effective in cost, and robust in quantification with the naked eye, showing great promise for next generation point-of-care testing.

Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 756 ◽  
Author(s):  
Guodong Liu ◽  
Anant Gurung ◽  
Wanwei Qiu

Here we report a lateral flow aptasensor (LFA) for the simultaneous detection of platelet-derived growth factor-BB (PDGF-BB) and thrombin. Two pairs of aptamers, which are specific against PDGF-BB and thrombin, respectively, were used to prepare the LFA. Thiolated aptamers were immobilized on a gold nanoparticle (AuNP) surface and biotinylated aptamers were immobilized on the test zones of an LFA nitrocellulose membrane. The assay involved the capture of PDGF-BB and thrombin simultaneously in sandwich-type formats between the capture aptamers on the test zones of LFA and AuNP-labeled detection aptamers. AuNPs were thus captured on the test zones of the LFA and gave red bands to enable the visual detection of target proteins. Quantitative results were obtained by reading the test band intensities with a portable strip reader. By combining the highly specific molecular recognition properties of aptamers with the unique properties of lateral flow assay (low-cost, short assay time and a user-friendly format), the optimized aptasensor was capable of simultaneously detecting 1.0 nM of PDGF-BB and 1.5 nM of thrombin in association with a 10-min assay time. The biosensor was also successfully applied to detect PDGF-BB and thrombin in spiked human serum samples. The LFA shows great promise for the development of aptamer-based lateral flow strip biosensors for point-of-care or for the in-field detection of disease-related protein biomarkers.


2018 ◽  
Vol 71 (10) ◽  
pp. 879-884 ◽  
Author(s):  
Jakeline Ribeiro Barbosa ◽  
Vanessa Faria Cortes ◽  
Moyra Machado Portilho ◽  
Juliana Custódio Miguel ◽  
Vanessa Alves Marques ◽  
...  

AimsPoint of care testing (POCT) has been used for hepatitis B and C diagnosis in general population, but little is known about the influence of clinical conditions in the accuracy of these assays. This study aims to evaluate the performance of POCTs for detection of hepatitis B virus surface antigen (HBsAg) and antibodies to Hepatitis C Virus (anti-HCV) in Chronic Kidney Disease (CKD) patients.MethodsA total of 286 subjects were included in this study. HBsAg and anti-HCV were detected using commercial EIAs and four POCTs: HBsAg (WAMA Imuno-Rápido HBsAg and VIKIA HBsAg) and anti-HCV (DOLES HCV teste rápido and WAMA Imuno-Rápido anti-HCV) in serum and whole blood.ResultsUsing EIA, HBsAg and anti-HCV prevalence was 4.5% and 16.1% in CKD patients. HBsAg and anti-HCV POCTs had sensitivities from 92.3% to 100% and 84.8% to 89.1% while specificities were 99.3% to 100% and 99.2% to 99.6%, respectively. POCT using serum samples performed well compared with whole blood samples and true positive samples of POCTs had high optical density to cut-off (OD/CO) values compared with EIA.ConclusionsThis study demonstrates good performance of HBsAg and anti-HCV POCTs in CKD patients, especially in serum samples indicating low interference of this disease in the performance of these assays. POCTs could be an important tool for HBV and HCV screening in high-risk populations.


2017 ◽  
Author(s):  
Bo Tian ◽  
Peter Svedlindh ◽  
Mattias Strömberg ◽  
Erik Wetterskog

In this work, we demonstrate for the first time, a ferromagnetic resonance (FMR) based homogeneous and volumetric biosensor for magnetic label detection. Two different isothermal amplification methods, <i>i.e.</i>, rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP) are adopted and combined with a standard electron paramagnetic resonance (EPR) spectrometer for FMR biosensing. For RCA-based FMR biosensor, binding of RCA products of a synthetic Vibrio cholerae target DNA sequence gives rise to the formation of aggregates of magnetic nanoparticles. Immobilization of nanoparticles within the aggregates leads to a decrease of the net anisotropy of the system and a concomitant increase of the resonance field. A limit of detection of 1 pM is obtained with an average coefficient of variation of 0.16%, which is superior to the performance of other reported RCA-based magnetic biosensors. For LAMP-based sensing, a synthetic Zika virus target oligonucleotide is amplified and detected in 20% serum samples. Immobilization of magnetic nanoparticles is induced by their co-precipitation with Mg<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (a by-product of LAMP) and provides a detection sensitivity of 100 aM. The fast measurement, high sensitivity and miniaturization potential of the proposed FMR biosensing technology makes it a promising candidate for designing future point-of-care devices.<br>


Biosensors ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 157
Author(s):  
Bárbara V. M. Silva ◽  
Marli T. Cordeiro ◽  
Marco A. B. Rodrigues ◽  
Ernesto T. A. Marques ◽  
Rosa F. Dutra

Zika virus (ZIKV) is a mosquito-borne infection, predominant in tropical and subtropical regions causing international concern due to the ZIKV disease having been associated with congenital disabilities, especially microcephaly and other congenital abnormalities in the fetus and newborns. Development of strategies that minimize the devastating impact by monitoring and preventing ZIKV transmission through sexual intercourse, especially in pregnant women, since no vaccine is yet available for the prevention or treatment, is critically important. ZIKV infection is generally asymptomatic and cross-reactivity with dengue virus (DENV) is a global concern. An innovative screen-printed electrode (SPE) was developed for amperometric detection of the non-structural protein (NS2B) of ZIKV by exploring the intrinsic redox catalytic activity of Prussian blue (PB), incorporated into a carbon nanotube–polypyrrole composite. Thus, this immunosensor has the advantage of electrochemical detection without adding any redox-probe solution (probe-less detection), allowing a point-of-care diagnosis. It was responsive to serum samples of only ZIKV positive patients and non-responsive to negative ZIKV patients, even if the sample was DENV positive, indicating a possible differential diagnosis between them by NS2B. All samples used here were confirmed by CDC protocols, and immunosensor responses were also checked in the supernatant of C6/36 and in Vero cell cultures infected with ZIKV.


Author(s):  
K. Albrecht ◽  
J. Lotz ◽  
L. Frommer ◽  
K. J. Lackner ◽  
G. J. Kahaly

Abstract Purpose Vitamin D (VitD) is a pleiotropic hormone with effects on a multitude of systems and metabolic pathways. Consequently, the relevance of a sufficiently high VitD serum level becomes self-evident. Methods A rapid immunofluorescence assay designed for the point-of-care measurement of serum VitD3 solely was tested. Inter- and intra-assay validation, double testing and result comparison with a standardized laboratory method were performed. Results An overall linear correlation of r = 0.89 (Pearson, 95% CI 0.88–0.92, p < 0.01) between the point of care and the conventional reference assay was registered. Accuracy and precision were of special interest at cut-points (10 ng/ml [mean deviation 1.7 ng/ml, SD 1.98 ng/ml, SE 0.16 ng/ml], 12 ng/ml [MD 0.41, SD 1.89, SE 0.19] and 30 ng/ml [MD − 1.11, SD 3.89, SE 0.35]). Only a slight deviation was detected between the two assays when using fresh (r = 0.91, 95% CI 0.86–0.94, p < 0.01) and frozen serum samples (r = 0.86, 0.82–0.89, p < 0.01). Results remained steady when samples were frozen several times. Inter- and intra-assay validation according to the CLSI protocol as well as multiuser testing showed stable results. Conclusion This novel, innovative, and controlled study indicates that the evaluated rapid point of care VitD assay is reliable, accurate, and suited for clinical practice.


Author(s):  
Alexander Hofmann ◽  
Michael Meister ◽  
Alexander Rolapp ◽  
Peggy Reich ◽  
Friedrich Scholz ◽  
...  

2007 ◽  
Vol 2 ◽  
pp. 117727190700200 ◽  
Author(s):  
Ziad J. Sahab ◽  
Suzan M. Semaan ◽  
Qing-Xiang Amy Sang

Biomarkers are biomolecules that serve as indicators of biological and pathological processes, or physiological and pharmacological responses to a drug treatment. Because of the high abundance of albumin and heterogeneity of plasma lipoproteins and glycoproteins, biomarkers are difficult to identify in human serum. Due to the clinical significance the identification of disease biomarkers in serum holds great promise for personalized medicine, especially for disease diagnosis and prognosis. This review summarizes some common and emerging proteomics techniques utilized in the separation of serum samples and identification of disease signatures. The practical application of each protein separation or identification technique is analyzed using specific examples. Biomarkers of cancers of prostate, breast, ovary, and lung in human serum have been reviewed, as well as those of heart disease, arthritis, asthma, and cystic fibrosis. Despite the advancement of technology few biomarkers have been approved by the Food and Drug Administration for disease diagnosis and prognosis due to the complexity of structure and function of protein biomarkers and lack of high sensitivity, specificity, and reproducibility for those putative biomarkers. The combination of different types of technologies and statistical analysis may provide more effective methods to identify and validate new disease biomarkers in blood.


2021 ◽  
Vol 5 ◽  
pp. 239920262110550
Author(s):  
Joško Osredkar ◽  
Katja Krivic ◽  
Teja Fabjan ◽  
Kristina Kumer ◽  
Jure Tršan ◽  
...  

Aim: Although the levels of cardiac troponin I (cTnI) have proved to be a useful diagnostic biomarker of acute myocardial infarction, there are a wide variety of point-of-care (POC) analysers, which provide measurements of cTnI. The aim of this study was to compare the results obtained by the ADVIA Centaur ultra-assay cTnI assay (us-cTnI), ADVIA Centaur high-sensitive cTnI assay (hs-cTnI) and a POC high-sensitivity assay using PATHFAST. We also aimed to explore total turnaround time (TAT) for laboratory results using the POC PATHFAST analyser. Methods: Samples from 161 patients were taken. Of these samples, 129 were tested with all three assays (us-cTnI, hs-cTnI and PATHFAST), and 32 samples were tested on PATHFAST for the comparison of whole blood, serum and plasma. Results: Comparison of the POC testing methods in this study demonstrated that there are strong linear relationships between all three cTnI assays (us-cTnI, hs-cTnI and POC on PATHFAST). Furthermore, we also show there are strong linear relationships between the two high-sensitive cTnI assays (hs-cTnI and PATHFAST) for blood serum samples, as determined by Passing–Bablok regression analyses. In our comparison of our new data with our older study, the TAT went down. Conclusion: The timeliness of laboratory results is, in addition to accuracy and precision, one of the key indicators of laboratory performance, and at the same time has a significant impact on the course of the patient’s condition. It is therefore important that the laboratory strives to meet the expectations of clinicians regarding the time from the order to the result of the analysis.


2018 ◽  
Vol 56 (8) ◽  
Author(s):  
Phornpun Phokrai ◽  
Wisansanee Karoonboonyanan ◽  
Nida Thanapattarapairoj ◽  
Chidchanok Promkong ◽  
Adul Dulsuk ◽  
...  

ABSTRACTMelioidosis is a fatal infectious disease caused by the environmental bacteriumBurkholderia pseudomallei. It is highly endemic in Asia and northern Australia but neglected in many other tropical countries. Melioidosis patients have a wide range of clinical manifestations, and definitive diagnosis requires bacterial culture, which can be time-consuming. A reliable rapid serological tool is greatly needed for disease surveillance and diagnosis. We previously demonstrated by enzyme-linked immunosorbent assay (ELISA) that a hemolysin-coregulated protein (Hcp1) is a promising target for serodiagnosis of melioidosis. In this study, we developed a rapid immunochromatography test (ICT) using Hcp1 as the target antigen (Hcp1-ICT). We evaluated this test for specific antibody detection using serum samples obtained from 4 groups of human subjects, including the following: (i) 487 culture-confirmed melioidosis patients from four hospitals in northeast Thailand; (ii) 202 healthy donors from northeast Thailand; (iii) 90 U.S. healthy donors; and (iv) 207 patients infected with other organisms. Compared to culture results as a gold standard, the sensitivity of ICT for all hospitals was 88.3%. The specificities for Thai donors and U.S. donors were 86.1% and 100%, respectively, and the specificity for other infections was 91.8%. The results of the Hcp1-ICT demonstrated 92.4% agreement with the Hcp1-ELISA results with a kappa value of 0.829, indicating that the method is much improved compared with the current serological method, the indirect hemagglutination assay (IHA) (69.5% sensitivity and 67.6% specificity for Thais). The Hcp1-ICT represents a potential point-of-care (POC) test and may be used to replace the IHA for screening of melioidosis in hospitals as well as in resource-limited areas.


Biosensors ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 91 ◽  
Author(s):  
Mayank Garg ◽  
Martin Christensen ◽  
Alexander Iles ◽  
Amit Sharma ◽  
Suman Singh ◽  
...  

Ferritin is a clinically important biomarker which reflects the state of iron in the body and is directly involved with anemia. Current methods available for ferritin estimation are generally not portable or they do not provide a fast response. To combat these issues, an attempt was made for lab-on-a-chip-based electrochemical detection of ferritin, developed with an integrated electrochemically active screen-printed electrode (SPE), combining nanotechnology, microfluidics, and electrochemistry. The SPE surface was modified with amine-functionalized graphene oxide to facilitate the binding of ferritin antibodies on the electrode surface. The functionalized SPE was embedded in the microfluidic flow cell with a simple magnetic clamping mechanism to allow continuous electrochemical detection of ferritin. Ferritin detection was accomplished via cyclic voltammetry with a dynamic linear range from 7.81 to 500 ng·mL−1 and an LOD of 0.413 ng·mL−1. The sensor performance was verified with spiked human serum samples. Furthermore, the sensor was validated by comparing its response with the response of the conventional ELISA method. The current method of microfluidic flow cell-based electrochemical ferritin detection demonstrated promising sensitivity and selectivity. This confirmed the plausibility of using the reported technique in point-of-care testing applications at a much faster rate than conventional techniques.


Sign in / Sign up

Export Citation Format

Share Document