scholarly journals A Survey of Rain Attenuation Prediction Models for Terrestrial Links—Current Research Challenges and State-of-the-Art

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1207
Author(s):  
Md Abdus Samad ◽  
Feyisa Debo Diba ◽  
Dong-You Choi

Millimeter-wave (30–300 GHz) frequency is a promising candidate for 5G and beyond wireless networks, but atmospheric elements limit radio links at this frequency band. Rainfall is the significant atmospheric element that causes attenuation in the propagated wave, which needs to estimate for the proper operation of fade mitigation technique (FMT). Many models have been proposed in the literature to estimate rain attenuation. Various models have a distinct set of input parameters along with separate estimation mechanisms. This survey has garnered multiple techniques that can generate input dataset for the rain attenuation models. This study extensively investigates the existing terrestrial rain attenuation models. There is no survey of terrestrial rain mitigation models to the best of our knowledge. In this article, the requirements of this survey are first discussed, with various dataset developing techniques. The terrestrial links models are classified, and subsequently, qualitative and quantitative analyses among these terrestrial rain attenuation models are tabulated. Also, a set of error performance evaluation techniques is introduced. Moreover, there is a discussion of open research problems and challenges, especially the exigency for developing a rain attenuation model for the short-ranged link in the E-band for 5G and beyond networks.

Author(s):  
A. I. O. Yussuff

The restrained use of millimeter bands is due to severe rain attenuation. Attenuation is caused when rain cells intersects radio wave’s propagation path; resulting in deep fades. The effect of rainfall is more severe in tropical regions characterized by heavy rainfall intensity and large raindrops; hence, rain attenuation analyses are essential to study rain fade characteristics for use in earth-space link budget analysis, for outage prediction resulting from rain attenuation. Tropical regions are particularly challenged with signal outage, necessitating the formulation and development of suitable prediction model(s) for the region. Therefore, extensive knowledge of the propagation phenomena mitigating system availability and signal quality in these bands are required. Daily rainfall data were collected from the Nigerian Meteorological Services for Lagos for spanning January to December 2010. Results showed that although, the ITU-R model out-performed the other prediction models under consideration, none of prediction models matched the measurement data.


2021 ◽  
Vol 13 (10) ◽  
pp. 1965
Author(s):  
Md Abdus Samad ◽  
Feyisa Debo Diba ◽  
Dong-You Choi

Satellite communication is a promising transmission technique to implement 5G and beyond networks. Attenuation due to rain begins at a frequency of 10 GHz in temperate regions. However, some research indicates that such attenuation effects start from 5–7 GHz, especially in tropical regions. Therefore, modeling rain attenuation is significant for propagating electromagnetic waves to achieve the required quality of service. In this survey, different slant link rain attenuation prediction models have been examined, classified, and analyzed, and various features like improvements, drawbacks, and particular aspects of these models have been tabulated. This survey provides various techniques for obtaining input data sets, including rain height, efficient trajectory length measurement techniques, and rainfall rate conversion procedures. No survey of the Earth–space link models for rain attenuation is available to the best of our knowledge. In this study, 23 rain attenuation models have been investigated. For easy readability and conciseness, the details of each model have not been included. The comparative analysis will assist in propagation modeling and planning the link budget of slant links.


2021 ◽  
Vol 6 (2) ◽  
pp. 27-37
Author(s):  
Abayomi Isiaka O. Yussuff ◽  
◽  
Kabir Momoh ◽  

This work concerns the evaluation of the performances of some selected rain attenuation models at two different locations in Lagos, Nigeria at 12 and 40 GHz. Scarcity of rainfall data in the tropical regions resulted in abysmal research efforts into the causes and solutions to satellite signal outages, this was further exacerbated by the convective tropical rain precipitations. The globally adopted ITU-R model, had been declared unsuitable for predicting rain attenuation in the tropics by several researchers in the literature. Two-year (January 2016 to December 2017) local rainfall data were sourced from the Nigerian Meteorological Services (NIMET) for two coastal stations (Ikeja and Oshodi). Rain attenuation exceeded for rain rate at 0.01% of the time, was computed after the 1-hour rain rate integration time which was sourced from NIMET was converted to 1-minute integration time. Attenuation exceeded for other percentages of time were also obtained using statistical interpolation and extrapolation methods. The collected data were tested with ITU-R, SST, SAM, DAH and Silva Mello et al. For Ikeja at 12 GHz, the SST was observed to closely match the measurement attenuation at 0.01%≤p≤1% of time exceeded; closely followed by Silver Mello. For Oshodi also at 12 GHz, SST intersected with the measured attenuation at 0.01%≤p≤0.03%, and p=0.1% of time. However, at 40 GHz, all the prediction models performed poorly by underestimating the measurement for Ikeja, although SST showed the best effort. The SST model matched the measurement, especially at p=0.03% and p=0.5% for Oshodi at 40 GHz, closely followed by Silva Mello which matched the measurement at p=0.05% and p=0.1%, while ITU-R, SAM and DAH largely underestimated the measurement. The SST was therefore affirmed the overall best performed rain attenuation prediction model for both stations at both frequency bands; closely followed by the Silva Mello. ITU-R, SAM and DAH on the other hand performed poorly. The findings arising from this work could present useful information to satellite equipment designers and manufacturers, while at the same time ensuring that service providers conform to the required service level agreements


Author(s):  
Arafa Omer Norain Malik ◽  
Mohammad Kamrul Hasan ◽  
Rashid A. Saeed ◽  
Rania A. Mokhtar ◽  
Siti Norul Huda Sheikh Abdullah ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Sujan Shrestha ◽  
Dong-You Choi

The attenuation induced by rain is prominent in the satellite communication at Ku and Ka bands. The paper studied the empirical determination of the power law coefficients which support the calculation of specific attenuation from the knowledge of rain rate at Ku and Ka band for Koreasat 6 and COMS1 in South Korea that are based on the three years of measurement. Rain rate data was measured through OTT Parsivel which shows the rain rate of about 50 mm/hr and attenuation of 10.7, 11.6, and 11.3 dB for 12.25, 19.8, and 20.73 GHz, respectively, for 0.01% of the time for the combined values of rain rate and rain attenuation statistics. Comparing with the measured data illustrates the suitability for estimation of signal attenuation in Ku and Ka band whose validation is done through the comparison with prominent rain attenuation models, namely, ITU-R P.618-12 and ITU-R P. 838-3 with the use of empirically determined coefficient sets. The result indicates the significance of the ITU-R recommended regression coefficients of rain specific attenuation. Furthermore, the overview of predicted year-wise rain attenuation estimation for Ka band in the same link as well as different link is studied which is obtained from the ITU-R P. 618-12 frequency scaling method.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 2030 ◽  
Author(s):  
Md Abdus Samad ◽  
Feyisa Debo Diba ◽  
Dong-You Choi

Scaling rain attenuation parameters will significantly benefit the quick monitoring of rain attenuation in a particular channel with previously known results or in situ setup attenuation measurements. Most of the rain attenuation scaling techniques have been derived for slant links. In this study, we also applied frequency and polarization scaling techniques for terrestrial link applications. We collected real measured datasets from research paper publications and examined those datasets using International Telecommunication Union-Radiocommunication sector (ITU-R) models (P.530-17, P.618-13). Our analyzed results show that existing long-term frequency and polarization scaling rain attenuation models (ITU-R P.618-13 for slant links and ITU-R P.530-17 for terrestrial links) show reduced performance for frequency and polarization scaling measured locations in South Korea. Hence, we proposed a new scaling technique using artificial neural networks from the measured rain attenuation data of slant and terrestrial links in South Korea. The experimental results confirm that the proposed Artificial Neural Network (ANN)-based scaling model shows satisfactory performance to predict attenuation for frequency and vertical polarization scaling.


Author(s):  
Islam Md Rafiqul ◽  
Md Moktarul Alam ◽  
Ali Kodhim Lwas ◽  
Sarah Yasmin Mohamad

Attenuation due to rain is an important constraint in microwave radio link design especially at frequencies above 10 GHz. It restricts the path length of radio communication systems and limits the use of higher frequencies for line-of-sight microwave links and satellite communications. In order to predict the attenuation due to rain accurately rainfall intensity is required with 1-minute integration time. Rainfall is a meteorological phenomenon with complex structure due to its variability in space, duration and occurrence frequency, particularly in tropical and equatorial regions. Since, the statistical distribution of rain attenuation is obtained from the rain rate distribution for the region considered, it should be noted that the accuracy of the rain rate measurement affects the accuracy of the attenuation estimation. This paper presents rain intensity with 1-minute integration time measured for 6 years in Malaysia, it’s distribution, comparison with other prediction models and impact on high frequency microwave links.


Sign in / Sign up

Export Citation Format

Share Document