scholarly journals A Survey on the Energy Detection of OFDM Signals with Dynamic Threshold Adaptation: Open Issues and Future Challenges

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3080
Author(s):  
Josip Lorincz ◽  
Ivana Ramljak ◽  
Dinko Begušić

Cognitive radio (CR), as a concept based on the ability to detect and share the unutilised spectrum, has been envisioned as a promising candidate to improve the efficiency of frequency spectrum assignments. For the realisation of the CR concept, energy detection (ED), as one of the available spectrum sensing methods, is broadly considered because of its low computational complexity and implementation costs. Due to the vast usage of the orthogonal frequency division multiplexing (OFDM) technique in contemporary communication systems, the ED of OFDM signals in the CR networks has become important for practical realisation. Since the ED accuracy of the OFDM signals can be improved by the sensing threshold adaptation, this paper surveys the impact of noise variations and dynamic threshold (DT) adaptation on the ED performance of OFDM signals. Analyses were performed by the simulation of the ED related to OFDM signals transmitted in the margin or rate adaptive and combined margin and rate adaptive OFDM systems. The results obtained through extensive simulations provide fundamental insights into how different factors, including the transmission power, the signal to noise ratio, the false alarm probability and the sample quantity, affect the ED efficiency. Comprehensive analyses of the obtained results indicate the main ED weaknesses and how the appropriate selection of analysed factors can enhance the ED processes for different OFDM systems. The observed ED weaknesses were further thoroughly surveyed, and the open issues and challenges related to the enhancement of the main ED limitations have been elaborated. The presented survey results can serve as a basis for the improvement of a broadly accepted ED method in CR networks.

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6881
Author(s):  
Josip Lorincz ◽  
Ivana Ramljak ◽  
Dinko Begusic

Cognitive radio technology enables spectrum sensing (SS), which allows the secondary user (SU) to access vacant frequency bands in the periods when the primary user (PU) is not active. Due to its minute implementation complexity, the SS approach based on energy detection (ED) of the PU signal has been analyzed in this paper. Analyses were performed for detecting PU signals by the SU in communication systems exploiting multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) transmission technology. To perform the analyses, a new algorithm for simulating the ED process based on a square-law combining (SLC) technique was developed. The main contribution of the proposed algorithm is enabling comprehensive simulation analyses of ED performance based on the SLC method for versatile combinations of operating parameter characteristics for different working environments of MIMO-OFDM systems. The influence of a false alarm on the detection probability of PU signals impacted by operating parameters such as the signal-to-noise ratios, the number of samples, the PU transmit powers, the modulation types and the number of the PU transmit and SU receive branches of the MIMO-OFDM systems have been analyzed in the paper. Simulation analyses are performed by running the proposed algorithm, which enables precise selection of and variation in the operating parameters, the level of noise uncertainty and the detection threshold in different simulation scenarios. The presented analysis of the obtained simulation results indicates how the considered operating parameters impact the ED efficiency of symmetric and asymmetric MIMO-OFDM systems.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Rui J. P. de Figueiredo ◽  
Lin Fang ◽  
Byung Moo Lee

Orthogonal frequency division multiplexing (OFDM) is a powerful modulation choice for wideband wireless communication systems. However, its high peak-to-average power ratio greatly limits the high power amplifier (HPA) power efficiency. Here, we present the design of an adaptive predistorter to compensate the distortion caused by the HPA. Specifically, we deal with the implementation issue of the proposed predistorter in Lee and de Figueiredo's work (2006). The performance improvement by predistorter is verified by both floating-point simulation and fixed-point simulation, where the latter includes the distortion effects from the hardware. The bit widths for OFDM signals, ADC, and DAC are evaluated, and the bit width of 10 is shown to be sufficient for the hardware design.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7678
Author(s):  
Josip Lorincz ◽  
Ivana Ramljak ◽  
Dinko Begušić

Cognitive radio (CR) technology has the potential to detect and share the unutilized spectrum by enabling dynamic spectrum access. To detect the primary users’ (PUs) activity, energy detection (ED) is widely exploited due to its applicability when it comes to sensing a large range of PU signals, low computation complexity, and implementation costs. As orthogonal frequency-division multiplexing (OFDM) transmission has been proven to have a high resistance to interference, the ED of OFDM signals has become an important local spectrum-sensing (SS) concept in cognitive radio networks (CRNs). In combination with multiple-input multiple-output (MIMO) transmissions, MIMO-OFDM-based transmissions have started to become a widely accepted air interface, which ensures a significant improvement in spectral efficiency. Taking into account the future massive implementation of MIMO-OFDM systems in the fifth and sixth generation of mobile networks, this work introduces a mathematical formulation of expressions that enable the analysis of ED performance based on the square-law combining (SLC) method in MIMO-OFDM systems. The analysis of the ED performance was done through simulations performed using the developed algorithms that enable the performance analysis of the ED process based on the SLC in the MIMO-OFDM systems having a different number of transmit (Tx) and receive (Rx) communication branches. The impact of the distinct factors including the PU Tx power, the false alarm probability, the number of Tx and Rx MIMO branches, the number of samples in the ED process, and the different modulation techniques on the ED performance in environments with different levels of signal-to-noise ratios are presented. A comprehensive analysis of the obtained results indicated how the appropriate selection of the analyzed factors can be used to enhance the ED performance of MIMO-OFDM-based CRNs.


2021 ◽  
Vol 9 (17) ◽  
pp. 26-39
Author(s):  
Hugo Wladimir Iza Benítez ◽  
Diego Javier Reinoso Chisaguano

UFMC (Universal Filtered Multi-Carrier) is a novel multi-carrier transmission technique that aims to replace the OFDM (Orthogonal Frequency Division Multiplexing) modulation technique for fifth generation (5G) wireless communication systems. UFMC, being a generalization of OFDM and FBMC (Filter Bank Multicarrier), combines the advantages of these systems and at the same time avoids their main disadvantages. Using a Matlab simulation, this article presents an analysis of the robustness of UFMC against fading effects of multipath channels without using a CP (cyclic prefix). The behavior of the UFMC system is analyzed in terms of the PSD (Power Spectral Density), BER (Bit Error Rate) and MSE (Mean Square Error). The results show that UFMC reduces the out-band side lobes produced in the PSD of the processed signal. Also, it is shown that the pilot-assisted channel estimation method applied in OFDM systems can also be applied in UFMC systems.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Saruti Gupta ◽  
Ashish Goel

Abstract The main drawback in the performance of the Orthogonal Frequency Division Multiplexing (OFDM) system is the higher Peak-to-Average Power Ratio (PAPR) of the OFDM signals at the transmitter side. Companding is a well-known technique useful for reducing PAPR in the OFDM signal. This paper proposes a new nonlinear companding scheme that transforms the magnitude of Rayleigh distributed OFDM signal of specific degree into trapezoidal distribution. Additional design parameter is used in the proposed companding scheme to make the companding function more flexible. In the designed OFDM system the companding function has more degree of freedom which improves the PAPR and bit error rate (BER) parameters of the designed system. It has been demonstrated that the designed companding scheme provides more flexibility to accomplish an optimum trade-off between the performance parameters PAPR and BER of the designed OFDM system.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 190 ◽  
Author(s):  
Brahim Bakkas ◽  
Reda Benkhouya ◽  
Idriss Chana ◽  
Hussain Ben-Azza

Orthogonal frequency division multiplexing (OFDM) is the key technology used in high-speed communication systems. One of the major drawbacks of OFDM systems is the high peak-to-average power ratio (PAPR) of the transmitted signal. The transmitted signal with a high PAPR requires a very large linear range of the Power Amplifier (PA) on the transmitter side. In this paper, we propose and study a new clipping method named Palm Clipping (Palm date leaf) based on hyperbolic cosine. To evaluate and analyze its performance in terms of the PAPR and Bit Error Rate (BER), we performed some computer simulations by varying the Clipping Ratio (CR) and modulation schemes. The obtained results show that it is possible to achieve a gain of between 7 and 9 dB in terms of PAPR reduction depending on the type of modulation. In addition, comparison with several techniques in terms of PAPR and BER shows that our method is a strong alternative that can be adopted as a PAPR reduction technique for OFDM-based communication systems.


Signals ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 100-109
Author(s):  
Tzu-Hsien Sang ◽  
You-Cheng Xu

The application of deep learning (DL) to solve physical layer issues has emerged as a prominent topic. In this paper, the mitigation of clipping effects for orthogonal frequency division multiplexing (OFDM) systems with the help of a Neural Network (NN) is investigated. Unlike conventional clipping recovery algorithms, which involve costly iterative procedures, the DL-based method learns to directly reconstruct the clipped part of the signal while the unclipped part is protected. Furthermore, an interpretation of the learned weight matrices of the neural network is presented. It is observed that parts of the network, in effect, implement transformations very similar to the (Inverse) Discrete Fourier Transform (DFT/IDFT) to provide information in both the time and frequency domains. The simulation results show that the proposed method outperforms existing algorithms for recovering clipped OFDM signals in terms of both mean square error (MSE) and Bit Error Rate (BER).


2014 ◽  
Vol 513-517 ◽  
pp. 3987-3991
Author(s):  
Naveed Ur Rehman ◽  
Lei Zhang ◽  
Muhammad Zahid Hammad ◽  
Emmanuel Anania Mwangosi

The rapid growth within the field of digital communication during the recent years expanded the need for high-speed data transmission to support a wide range of services such as: video, data and voice in wireless communication systems, etc. Orthogonal frequency division multiplexing (OFDM) and a multicarrier modulation scheme are employed to achieve the high data rates. Since OFDM is very much sensitive to carrier frequency offsets, which cause the Inter-carrier Interference (ICI) leads to mitigation of this ICI is necessary. The objectives of this paper are to, proposed an efficient ICI self-cancellation scheme to mitigate the effect of ICI on OFDM systems. For this purpose, a redundant data is transmitted onto adjacent sub-carriers such that the ICI between adjacent sub-carriers cancels out at the receiver side. One data symbol is modulated into a group of adjacent sub carriers with a group of weighting coefficients. At the receiver side, the received signals are linearly combined on these sub carriers with proposed coefficients. The residual ICI contained in the received signals can then be further reduced. This study provides significant carrier-to-interference power ratio (CIR) improvement, which has been studied theoretically and supported by simulations. Since no channel equalization is required to reduce ICI, so the proposed scheme doesnt increase the system complexity.


2016 ◽  
Vol 14 (1) ◽  
pp. 705-722 ◽  
Author(s):  
Sotirios K. Goudos

AbstractA major drawback of orthogonal frequency division multiplexing (OFDM) signals is the high value of peak to average power ratio (PAPR). Partial transmit sequences (PTS) is a popular PAPR reduction method with good PAPR reduction performance, but its search complexity is high. In this paper, in order to reduce PTS search complexity we propose a new technique based on biogeography-based optimization (BBO). More specifically, we present a new Generalized Oppositional Biogeography Based Optimization (GOBBO) algorithm which is enhanced with Oppositional Based Learning (OBL) techniques. We apply both the original BBO and the new Generalized Oppositional BBO (GOBBO) to the PTS problem. The GOBBO-PTS method is compared with other PTS schemes for PAPR reduction found in the literature. The simulation results show that GOBBO and BBO are in general highly efficient in producing significant PAPR reduction and reducing the PTS search complexity.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Zhen-dong Zhang ◽  
Bin Wu ◽  
Yu-mei Zhou

The combination of multiple-input multiple-output (MIMO) signal processing with orthogonal frequency-division multiplexing (OFDM) technique is one favored solution in wireless communication systems for enhancing data rate. However, the computational complexity is also linear increased with the number of data streams. Generally, multiple finite impulse response (FIR) interpolations and decimations are added to solve the multiple data streams in a MIMO OFDM system, which cause a large increase in the hardware cost. In this paper, two multipath pipelined polyphase structures for FIR interpolation and decimation to efficiently deal with the simultaneous multiple data streams are proposed. According to the proposed structures, M simultaneous data streams can be supported in the M-component polyphase interpolation or decimation with only one set of computation units. Implementation examples show that up to 56% reduction of silicon area can be obtained over the traditional polyphase structures.


Sign in / Sign up

Export Citation Format

Share Document