scholarly journals Electrical Capacitance Characteristics of Wood Chips at Low Frequency Ranges: A Cheap Tool for Quality Assessment

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3494
Author(s):  
Jakub Lev ◽  
Václav Křepčík ◽  
Egidijus Šarauskis ◽  
František Kumhála

Moisture content is one of the most important parameters related to the quality of wood chips that affects both the calorific and economic value of fuel chips. For industrial applications, moisture content needs to be detected quickly. For this purpose, various indirect moisture content measurement methods (e.g., capacitance, NIR, microwave, ECT, X-ray CT, and nuclear MR) have been investigated with different results in the past. Nevertheless, determining wood chip moisture content in real time is still a challenge. The main aim of this article was therefore to analyze the dielectric properties of wood chips at low frequencies (10 kHz–5 MHz) and to examine the possibility of using these properties to predict wood chip moisture content and porosity. A container-type probe was developed for this purpose. The electrical capacitance and dissipation factor of wood chips with different moisture content was measured by an LCR meter at 10 kHz, 50 kHz, 100 kHz, 500 kHz, 1 MHz, and 5 MHz frequencies. Wood chip porosity was also measured using a gas displacement method. Linear models for moisture content and porosity prediction were determined by backward stepwise linear regression. Mathematical model was developed to better understand the physical relationships between moisture content, porosity, and electrical capacitance. These models were able to predict the moisture content of observed quantities of wood chips with the required accuracy (R2 = 0.9−0.99). This finding opens another path to measuring the moisture content and porosity of wood chips in a relatively cheap and fast way and with adequate precision. In addition, principal component analysis showed that it is also possible to distinguish between individual wood chip fraction sizes from the information obtained.

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1590 ◽  
Author(s):  
Angelo Del Giudice ◽  
Andrea Acampora ◽  
Enrico Santangelo ◽  
Luigi Pari ◽  
Simone Bergonzoli ◽  
...  

Drying is a critical point for the exploitation of biomass for energy production. High moisture content negatively affects the efficiency of power generation in combustion and gasification systems. Different types of dryers are available however; it is known that rotary dryers have low cost of maintenance and consume 15% and 30% less in terms of specific energy. The study analyzed the drying process of woody residues using a new prototype of mobile rotary dryer cocurrent flow. Woodchip of poplar (Populus spp.), black locust (Robinia pseudoacacia L.), and grapevine (Vitis vinifera L.) pruning were dried in a rotary drier. The drying cycle lasted 8 h for poplar, 6 h for black locust, and 6 h for pruning of grapevine. The initial biomass had a moisture content of around 50% for the poplar and around 30% for grapevine and black locust. The study showed that some characteristics of the biomass (e.g., initial moisture content, particle size distribution, bulk density) influence the technical parameters (i.e., airflow temperature, rate, and speed) of the drying process and, hence, the energy demand. At the end of the drying process, 17% of water was removed for poplar wood chips and 31% for grapevine and black locust wood chips. To achieve this, result the three-biomass required 1.61 (poplar), 0.86 (grapevine), and 1.12 MJ kgdry solids−1 (black locust), with an efficiency of thermal drying (η) respectively of 37%, 12%, and 27%. In the future, the results obtained suggest an increase in the efficiency of the thermal insulation of the mobile dryer, and the application of the mobile dryer in a small farm, for the recovery of exhaust gases from thermal power plants.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Monika Aniszewska ◽  
Krzysztof Słowiński ◽  
Ewa Tulska ◽  
Witold Zychowicz

AbstractThe paper proposes the use of microwave irradiation to lower the initial moisture content of wood chips. The study involved willow and fir chips fractionated by means of a sieve separator and unfractionated ash chips. The wood chips were exposed to a constant microwave power of 800 W for 30 s, 60 s, 120 s and 180 s. The chips were weighed before and after irradiation to measure loss of moisture. It was found that the decline in moisture content increased with wood chip size for a given irradiation time and microwave power. The initial moisture content of wood chips was not found to significantly affect loss of moisture as the drying rates of wood chips with higher and lower moisture content exposed to microwaves were not statistically different. The results showed that irradiation intensity increased with the time of exposure to microwaves and unit radiant energy per unit of evaporated moisture decreased with increasing wood chip size in the 3.15–31.50 mm range.


1972 ◽  
Vol 2 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Roger S. Smith ◽  
A. Ofosu-Asiedu

A study into the distribution of thermophilic and thermotolerant fungi in a spruce-pine (Picea spp.—Pinus spp.) wood chip pile at Prince George, B.C., was carried out. Five treatments were examined: pine, spruce, spruce containing a core bag of fines, spruce containing a core bag of sterilized spruce chips and spruce containing a core bag of spruce chips inoculated with a Ptychogaster sp. [probably Chrysosporiumpruinosum (Gilman and Abbott) Carmichael]. Samples of wood chips buried at different locations in the chip pile were examined after 3, 6, and 12 month storage periods. From 100 randomly selected chips from each sample, the fungi were isolated on 2% malt, 2% agar, and 0.5% malic acid medium. Data on temperature during storage, pH of wood chips, moisture content, and weight loss at the time of sampling were calculated for the various sampling positions.Thermophilic fungi colonized the inner regions of the wood chip pile where higher wood substance losses occurred, while thermotolerant fungi inhabited the outer regions. Among the thermophilic fungi listed according to frequency of isolation were Byssochlamysemersonii Stolk-Apinis, Allescheriaterrestris Apinis, Sporotrichumthermophile Apinis, Thermoascusaurantiacus Miehe, and Humicolalanuginosa (Griffon and Maublanc) Bunce. The most common thermotolerant fungi were Aspergillusfumigatus Fresenius and C. pruinosum.Fungal distribution was generally related to position in the wood chip pile. Of the associated factors, temperature (17–60 °C) was most strongly related to fungal distribution, whereas treatment, pH of wood chips, and moisture content did not relate to fungal distribution.


2020 ◽  
Vol 3 (1) ◽  
pp. 54
Author(s):  
Monika Aniszewska ◽  
Arkadiusz Gendek ◽  
Jan Malaťák ◽  
Barbora Tamelová ◽  
Sebastian Smyl

Pine, birch, and cotoneaster wood chips were segregated and exposed to microwave radiation. Moisture content was measured before and after microwave treatment, and the surface temperature of wood chip samples was recorded. The results showed that due to the selective nature of the process, the duration of microwave radiation should be adjusted taking into account the size fraction of the examined material. Wood chips exposed to microwaves for more than 30 s heated up to over 100 °C. Finer wood chips were found to lose moisture more slowly.


Environments ◽  
2018 ◽  
Vol 5 (7) ◽  
pp. 84 ◽  
Author(s):  
Ehsan Oveisi ◽  
Shahab Sokhansanj ◽  
Anthony Lau ◽  
Jim Lim ◽  
Xiaotao Bi ◽  
...  

In this study, the moisture content, calorific value, and particle size of recycled wood chips were measured. The wood chips were used to fuel an 8.5 MWth updraft gasifier to produce syngas for combustion in a steam-producing boiler. In-situ syngas composition and tar concentrations were measured and analyzed against biomass fuel properties. No efforts were made to adjust the properties of biomass or the routine operating conditions for the gasifier. A sampling device developed by CanmetENERGY-Ottawa (Ottawa, ON, Canada) was used to obtain syngas and tar samples. Wood chip samples fed to the gasifier were taken at the same time the gas was sampled. Results indicate that as the fuel moisture content increases from 20% to 35%, the production of CO drops along with a slight decrease in concentrations of H2 and CH4. Tar concentration increased slightly with increased moisture content and proportion of small fuel particles (3.15–6.3 mm). Based on the findings of this study, biomass fuel moisture content of 20% and particles larger than 6.3 mm (1/4″) are recommended for the industrial updraft gasifier in order to achieve a higher syngas quality and a lower tar concentration.


2021 ◽  
Vol 11 (4) ◽  
pp. 151-156
Author(s):  
Baibhaw Kumar ◽  
L. Gábor Szepesi ◽  
Zoltán Szamosi

Solid biofuels such as woodchips have always been a significant source of fuel in the field of renewable energy. However, the drying of wood chips has been a challenge in preparing biofuels and other applications. The moisture content of below 25% in the wood chips of grade EN 14961 is considered the premium wood chip material. Solar drying emerged as a leading solution for the drying of wood chips. The paper investigates the comparison of moisture removal rate using a natural convective solar dryer compared to open sun drying developed at Miskolc, Hungary (48°06'15.0"N 20°47'30.0"E).


2018 ◽  
Vol 49 (2) ◽  
pp. 110-116
Author(s):  
Philip Pichler ◽  
Martin Leitner ◽  
Florian Grün ◽  
Christoph Guster

Using large wood chips for heating systems in industrial applications is becoming popular. As a result, the requirements of the machinery that produces these large wood chips have increased, especially on the chipping tools and on the surrounding supportive components. This paper evaluates the acting main forces on a chipping drum that produces large wood chips via field and laboratory-based experimental measurements. In this study, a variety of strain gauges are applied to selected areas of the rotating chipping drum to measure localised strain conditions during wood-stem cutting. Four different wood species were investigated for comparison. Furthermore, the influence of sharp and dull knives is analysed. With the aid of experimental measurements and analysis on a laboratory scale, linear models are developed to determine the chipping force, which is cutting depth-dependent, for a variety of wood species. Testing parameters for such models are proposed via load spectra. The variability of the acting force value is evident. The maximum load on the drum affects at 10% of the time of a single cut. The largest applied forces are between 1.6 and 1.8 higher than the calculated average force. The commuting hornbeam sample exhibits the highest resistance against chipping compared to the three-other species. Additionally, a change in the load is easily recognised in the field test when utilising dull chipping blades. A reconstruction of the alternate load direction is based on laboratory testing.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3931
Author(s):  
Nerijus Pedišius ◽  
Marius Praspaliauskas ◽  
Justinas Pedišius ◽  
Eugenija Farida Dzenajavičienė

Wood chips and logging residues currently comprise the largest share of biomass fuels used for heat generation in district heating plants and are provided by a variety of suppliers. Ash and moisture contents, as well as the calorific value, may vary considerably depending on the composition of the fuel, seasonality, location, and other factors. This paper provides the summarized results of the main characteristics of wood chip moisture and ash content and calorific value, experimentally tested for a significant range of samples. Chip samples were collected from two district heating companies and tested for a significant range of samples. Chip samples were collected from two district heating companies and tested for a 3-year period. The data on fuel chip prices were taken from the electronic wood chip trading platform. The tests were performed using standard express methods, where two sub-samples were taken and analyzed from every chip sample. It was determined that the moisture content of the wood chips varied from 35% to 45%, the calorific value from 18.4 to 19.6 MJ/kg, and the ash content from 0.5% to 4.5%. The calculated relative expanded uncertainty of the moisture content measurement was ±2.1%, of calorific value—±1.5%, and of ash—±1.0%. The repeatability of the results was estimated as the pooled standard deviation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
María Isabel Iñiguez-Luna ◽  
Jorge Cadena-Iñiguez ◽  
Ramón Marcos Soto-Hernández ◽  
Francisco Javier Morales-Flores ◽  
Moisés Cortes-Cruz ◽  
...  

AbstractBioprospecting identifies new sources of compounds with actual or potential economic value that come from biodiversity. An analysis was performed regarding bioprospecting purposes in ten genotypes of Sechium spp., through a meta-analysis of 20 information sources considering different variables: five morphological, 19 biochemical, anti-proliferative activity of extracts on five malignant cell lines, and 188 polymorphic bands of amplified fragment length polymorphisms, were used in order to identify the most relevant variables for the design of genetic interbreeding. Significant relationships between morphological and biochemical characters and anti-proliferative activity in cell lines were obtained, with five principal components for principal component analysis (SAS/ETS); variables were identified with a statistical significance (< 0.7 and Pearson values ≥ 0.7), with 80.81% of the accumulation of genetic variation and 110 genetic bands. Thirty-nine (39) variables were recovered using NTSYSpc software where 30 showed a Pearson correlation (> 0.5) and nine variables (< 0.05), Finally, using a cladistics analysis approach highlighted 65 genetic bands, in addition to color of the fruit, presence of thorns, bitter flavor, piriform and oblong shape, and also content of chlorophylls a and b, presence of cucurbitacins, and the IC50 effect of chayote extracts on the four cell lines.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1360
Author(s):  
Ekaterina Budenkova ◽  
Stanislav Sukhikh ◽  
Svetlana Ivanova ◽  
Olga Babich ◽  
Vyacheslav Dolganyuk ◽  
...  

Enzymatic hydrolysis of cellulose-containing raw materials, using Aspergillus niger, were studied. Filter paper, secondary cellulose-containing or starch-containing raw materials, miscanthus cellulose after alkaline or acid pretreatment, and wood chip cellulose, were used as substrates. The study focused on a wild A. niger strain, treated, or not (control), by ultraviolet (UV) irradiations for 45, 60, or 120 min (UV45, UV60, or UV120), or by UV irradiation for 120 min followed by a chemical treatment with NaN3 + ItBr for 30 min or 80 min (UV120 + CH30 or UV120 + CH80). A mixture of all the A. niger strains (MIX) was also tested. A citrate buffer, at 50 mM, wasthe most suitable for enzymatic hydrolysis. As the UV exposure time increased to 2 h, the cellulase activity of the surviving culturewas increased (r = 0.706; p < 0.05). The enzymatic activities of the obtained strains, towards miscanthus cellulose, wood chips, and filter paper, were inferior to those obtained with commercial enzymes (8.6 versus 9.1 IU), in some cases. Under stationary hydrolysis at 37 °C, pH = 4.7, the enzymatic activity of A. niger UV120 + CH30 was 24.9 IU. The enzymatic hydrolysis of secondary raw materials, using treated A. niger strains, was themost effective at 37 °C. Similarly, the most effective treatment of miscanthus cellulose and wood chips occurred at 50 °C. The maximum conversion of cellulose to glucose was observed using miscanthus cellulose (with alkaline pretreatment), and the minimum conversion was observed when using wood chips. The greatest value of cellulase activity was evidenced in the starch-containing raw materials, indicating that A. niger can ferment not only through cellulase activity, but also via an amylolytic one.


Sign in / Sign up

Export Citation Format

Share Document