scholarly journals Smart Hospital Sensor Network Deployment for Mobile and Remote Healthcare System 

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5514
Author(s):  
Yoonkyung Jang ◽  
Intae Ryoo ◽  
Seokhoon Kim

In this paper, we propose a hospital sensor network deployment method for smart healthcare systems. Since sensor nodes in hospitals are always in an environment where power can be supplied, it is essential to have stable network connectivity by achieving optimal gateway deployment, rather than focusing on energy efficiency. The proposed technique leads to an access point (AP) layout that minimizes the overall network operation cost. The operation cost is calculated per unit time, and it includes installation cost and maintenance cost. In addition, group numbers are assigned to sensor nodes for guaranteeing network connectivity, no matter where the mobile sensor devices move. The performance of the proposed methodology has been verified through numerical experiments.

2015 ◽  
Vol 35 (2) ◽  
pp. 67-73 ◽  
Author(s):  
Felipe Denis Mendonça de Oliveira ◽  
Rodrigo Soares Semente ◽  
Jefferson Doolan Fernandes ◽  
Tálison Augusto Correia de Melo ◽  
Serafim Do Nascimento Júnior ◽  
...  

<p class="Abstractandkeywordscontent"><span lang="EN-US">Nowadays, the vast majority of information monitoring in industrial plants is still carried out by wired technologies, in which the installation and maintenance cost is high. However, in outdoor applications, such as those used in the oil and gas industry, the use of Wireless Sensor Networks (WSN) is increasing due to mobility, reliability, and low cost of the sensor nodes that make up the network. Moreover, this solution reduces the risks of workers in classified areas (regions with high probability of accidents occurrence) to the extent that the equipment maintenance is optimized.  This paper proposes the development of the EEWES, an energy efficient wireless sensor network embedded system, which can be applied on industrial environments. This development approach significantly reduces the energy consumption of the sensor nodes by using a method that alternates sleep periods of the transceiver/sensor set with data transmission/reception periods, which reduces the duty cycle while keeping the desirable parameters of the service quality (QoS). The results presented in this paper will be confirmed by field tests.</span></p>


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1993 ◽  
Author(s):  
Jun Liu ◽  
Wenxue Guan ◽  
Guangjie Han ◽  
Jun-Hong Cui ◽  
Lance Fiondella ◽  
...  

Deployment of surface-level gateways holds potential as an effective method to alleviate high-propagation delays and high-error probability in an underwater wireless sensor network (UWSN). This promise comes from reducing distances to underwater nodes and using radio waves to forward information to a control station. In an UWSN, a dynamic energy efficient surface-level gateway deployment is required to cope with the mobility of underwater nodes while considering the remote and three-dimensional nature of marine space. In general, deployment problems are usually modeled as an optimization problem to satisfy multiple constraints given a set of parameters. One previously published static deployment optimization framework makes assumptions about network workload, routing, medium access control performance, and node mobility. However, in real underwater environments, all these parameters are dynamic. Therefore, the accuracy of performance estimates calculated through static UWSN deployment optimization framework tends to be limited by nature. This paper presents the Prediction-Assisted Dynamic Surface Gateway Placement (PADP) algorithm to maximize the coverage and minimize the average end-to-end delay of a mobile underwater sensor network over a specified period. PADP implements the Interacting Multiple Model (IMM) tracking scheme to predict the positions of sensor nodes. The deployment is determined based on both current and predicted positions of sensor nodes, which enables better coverage and shorter end-to-end delay. PADP uses a branch-and-cut approach to solve the optimization problem efficiently, and employs a disjoint-set data structure to ensure connectivity. Simulation results illustrate that PADP significantly outperforms a static gateway deployment scheme.


Author(s):  
Alok R. Prusty ◽  
Srinivas Sethi ◽  
Ajit Kumar Nayak

Advancement in wireless technology made human life become simple and easy going. Wireless Ad Hoc Sensor Network (WASN) is one of the friendly wireless networks used to monitor the most unfriendly and ever changing dynamic environment that restricts continuous human attention. WASN has drawn significant attentions due to its unique capabilities to deal with complex network operation in highly resource constrained network construct. This ad hoc and unstructured deployment of tiny sensor nodes operate with controlled transmission range, processing capabilities, as well as very limited battery backup. The severe power depletion affects the existence of active nodes. Hence, data forwarding and reliable packet routing in such phenomenon oriented network becoming a challenge. In this chapter the clustering and hierarchical routing approaches for WASN environment has been briefly presented followed by some optimization strategies applicable to cluster routing process. This chapter can help researchers to think fresh dimensions of ongoing research in WASN cluster routing.


Author(s):  
Cheng-Tai Yeh ◽  
Robert X. Gao

This paper presents an energy-efficient node activation scheme that reduces the cost in recharging energy-depleted sensor nodes in a wireless sensor network. The network operation combined with node activation is modeled as a stochastic decision process, where the activation decisions directly affect the energy efficiency of the network. An analytical model is developed to formulate the network operation as a Semi-Markov Decision Process (SMDP) by assuming exponentially distributed recharging and discharging times. Using this model, an optimal activation policy is obtained that minimizes the recharging rate. To evaluate the developed node activation scheme, simulation was performed for both a correlated and an independent sensor network model. In the correlated model, a 72% reduction of recharging rate has been achieved, compared with no intelligent node activation. The approach presented provides a framework for designing wireless sensor networks where energy efficiency is of critical importance.


2020 ◽  
pp. 1494-1521 ◽  
Author(s):  
Alok R. Prusty ◽  
Srinivas Sethi ◽  
Ajit Kumar Nayak

Advancement in wireless technology made human life become simple and easy going. Wireless Ad Hoc Sensor Network (WASN) is one of the friendly wireless networks used to monitor the most unfriendly and ever changing dynamic environment that restricts continuous human attention. WASN has drawn significant attentions due to its unique capabilities to deal with complex network operation in highly resource constrained network construct. This ad hoc and unstructured deployment of tiny sensor nodes operate with controlled transmission range, processing capabilities, as well as very limited battery backup. The severe power depletion affects the existence of active nodes. Hence, data forwarding and reliable packet routing in such phenomenon oriented network becoming a challenge. In this chapter the clustering and hierarchical routing approaches for WASN environment has been briefly presented followed by some optimization strategies applicable to cluster routing process. This chapter can help researchers to think fresh dimensions of ongoing research in WASN cluster routing.


2016 ◽  
Vol 13 (1) ◽  
pp. 116
Author(s):  
Wan Isni Sofiah Wan Din ◽  
Saadiah Yahya ◽  
Mohd Nasir Taib ◽  
Ahmad Ihsan Mohd Yassin ◽  
Razulaimi Razali

Clustering in Wireless Sensor Network (WSN) is one of the methods to minimize the energy usage of sensor network. The design of sensor network itself can prolong the lifetime of network. Cluster head in each cluster is an important part in clustering to ensure the lifetime of each sensor node can be preserved as it acts as an intermediary node between the other sensors. Sensor nodes have the limitation of its battery where the battery is impossible to be replaced once it has been deployed. Thus, this paper presents an improvement of clustering algorithm for two-tier network as we named it as Multi-Tier Algorithm (MAP). For the cluster head selection, fuzzy logic approach has been used which it can minimize the energy usage of sensor nodes hence maximize the network lifetime. MAP clustering approach used in this paper covers the average of 100Mx100M network and involves three parameters that worked together in order to select the cluster head which are residual energy, communication cost and centrality. It is concluded that, MAP dominant the lifetime of WSN compared to LEACH and SEP protocols. For the future work, the stability of this algorithm can be verified in detailed via different data and energy. 


Author(s):  
Chao Wang

Background: It is important to improve the quality of service by using congestion detection technology to find the potential congestion as early as possible in wireless sensor network. Methods: So an improved congestion control scheme based on traffic assignment and reassignment algorithm is proposed for congestion avoidance, detection and mitigation. The congestion area of the network is detected by predicting and setting threshold. When the congestion occurs, sensor nodes can be recovery quickly from congestion by adopting reasonable method of traffic reassignment. And the method can ensure the data in the congestion areas can be transferred to noncongestion areas as soon as possible. Results: The simulation results indicate that the proposed scheme can reduce the number of loss packets, improve the throughput, stabilize the average transmission rate of source node and reduce the end-to-end delay. Conclusion: : So the proposed scheme can enhance the overall performance of the network. Keywords: wireless sensor network; congestion control; congestion detection; congestion mitigation; traffic assignment; traffic reassignment.


2018 ◽  
Vol 14 (01) ◽  
pp. 4
Author(s):  
Wang Weidong

To improve the efficiency of the remote monitoring system for logistics transportation, we proposed a remote monitoring system based on wireless sensor network and GPRS communication. The system can collect information from the wireless sensor network and transmit the information to the ZigBee interpreter. The monitoring system mainly includes the following parts: Car terminal, GPRS transmission network and monitoring center. Car terminal mainly consists by the Zigbee microcontroller and peripherals, wireless sensor nodes, RFID reader, GPRS wireless communication module composed of a micro-wireless monitoring network. The information collected by the sensor communicates through the GPRS and the monitoring center on the network coordinator, sends the collected information to the monitoring center, and the monitoring center realizes the information of the logistics vehicle in real time. The system has high applicability, meets the design requirements in the real-time acquisition and information transmission of the information of the logistics transport vehicles and goods, and realizes the function of remote monitoring.


Author(s):  
Yang Wang ◽  
Feifan Wang ◽  
Yujun Zhu ◽  
Yiyang Liu ◽  
Chuanxin Zhao

AbstractIn wireless rechargeable sensor network, the deployment of charger node directly affects the overall charging utility of sensor network. Aiming at this problem, this paper abstracts the charger deployment problem as a multi-objective optimization problem that maximizes the received power of sensor nodes and minimizes the number of charger nodes. First, a network model that maximizes the sensor node received power and minimizes the number of charger nodes is constructed. Second, an improved cuckoo search (ICS) algorithm is proposed. This algorithm is based on the traditional cuckoo search algorithm (CS) to redefine its step factor, and then use the mutation factor to change the nesting position of the host bird to update the bird’s nest position, and then use ICS to find the ones that maximize the received power of the sensor node and minimize the number of charger nodes optimal solution. Compared with the traditional cuckoo search algorithm and multi-objective particle swarm optimization algorithm, the simulation results show that the algorithm can effectively increase the receiving power of sensor nodes, reduce the number of charger nodes and find the optimal solution to meet the conditions, so as to maximize the network charging utility.


Sign in / Sign up

Export Citation Format

Share Document