scholarly journals Classification and Automated Interpretation of Spinal Posture Data Using a Pathology-Independent Classifier and Explainable Artificial Intelligence (XAI)

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6323
Author(s):  
Carlo Dindorf ◽  
Jürgen Konradi ◽  
Claudia Wolf ◽  
Bertram Taetz ◽  
Gabriele Bleser ◽  
...  

Clinical classification models are mostly pathology-dependent and, thus, are only able to detect pathologies they have been trained for. Research is needed regarding pathology-independent classifiers and their interpretation. Hence, our aim is to develop a pathology-independent classifier that provides prediction probabilities and explanations of the classification decisions. Spinal posture data of healthy subjects and various pathologies (back pain, spinal fusion, osteoarthritis), as well as synthetic data, were used for modeling. A one-class support vector machine was used as a pathology-independent classifier. The outputs were transformed into a probability distribution according to Platt’s method. Interpretation was performed using the explainable artificial intelligence tool Local Interpretable Model-Agnostic Explanations. The results were compared with those obtained by commonly used binary classification approaches. The best classification results were obtained for subjects with a spinal fusion. Subjects with back pain were especially challenging to distinguish from the healthy reference group. The proposed method proved useful for the interpretation of the predictions. No clear inferiority of the proposed approach compared to commonly used binary classifiers was demonstrated. The application of dynamic spinal data seems important for future works. The proposed approach could be useful to provide an objective orientation and to individually adapt and monitor therapy measures pre- and post-operatively.

Author(s):  
DAYAN MANOHAR SIVALINGAM ◽  
NARENKUMAR PANDIAN ◽  
JEZEKIEL BEN-ARIE

In this work, we develop an efficient technique to transform a multiclass recognition problem into a minimal binary classification problem using the Minimal Classification Method (MCM). The MCM requires only log 2 N classifications whereas the other methods require much more. For the classification, we use Support Vector Machine (SVM) based binary classifiers since they have superior generalization performance. Unlike the prevalent one-versus-one strategy (the bottom-up one-versus-one strategy is called tournament method) that separates only two classes at each classification, the binary classifiers in our method have to separate two groups of multiple classes. As a result, the probability of generalization error increases. This problem is alleviated by utilizing error correcting codes, which results only in a marginal increase in the required number of classifications. However, in comparison to the tournament method, our method requires only 50% of the classifications and still similar performance can be attained. The proposed solution is tested with the Columbia Object Image Library (COIL). We also test the performance under conditions of noise and occlusion.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1450
Author(s):  
Seul-Gi Kim ◽  
Donghyun Park ◽  
Jae-Yoon Jung

Today, real-time fault detection and predictive maintenance based on sensor data are actively introduced in various areas such as manufacturing, aircraft, and power system monitoring. Many faults in motors or rotating machinery like industrial robots, aircraft engines, and wind turbines can be diagnosed by analyzing signal data such as vibration and noise. In this study, to detect failures based on vibration data, preprocessing was performed using signal processing techniques such as the Hamming window and the cepstrum transform. After that, 10 statistical condition indicators were extracted to train the machine learning models. Specifically, two types of Mahalanobis distance (MD)-based one-class classification methods, the MD classifier and the Mahalanobis–Taguchi system, were evaluated in detecting the faults of rotating machinery. Their performance for fault detection on rotating machinery was evaluated with different imbalanced ratios of data by comparing with binary classification models, which included classical versions and imbalanced classification versions of support vector machine and random forest algorithms. The experimental results showed the MD-based classifiers became more effective than binary classifiers in cases in which there were much fewer defect data than normal data, which is often common in the real-world industrial field.


Author(s):  
Jie Xu ◽  
Xianglong Liu ◽  
Zhouyuan Huo ◽  
Cheng Deng ◽  
Feiping Nie ◽  
...  

Support Vector Machine (SVM) is originally proposed as a binary classification model, and it has already achieved great success in different applications. In reality, it is more often to solve a problem which has more than two classes. So, it is natural to extend SVM to a multi-class classifier. There have been many works proposed to construct a multi-class classifier based on binary SVM, such as one versus all strategy, one versus one strategy and Weston's multi-class SVM. One versus all strategy and one versus one strategy split the multi-class problem to multiple binary classification subproblems, and we need to train multiple binary classifiers. Weston's multi-class SVM is formed by ensuring risk constraints and imposing a specific regularization, like Frobenius norm. It is not derived by maximizing the margin between hyperplane and training data which is the motivation in SVM. In this paper, we propose a multi-class SVM model from the perspective of maximizing margin between training points and hyperplane, and analyze the relation between our model and other related methods. In the experiment, it shows that our model can get better or compared results when comparing with other related methods.


Author(s):  
M. Peréz-Ortiz ◽  
P. Tiňo ◽  
R. Mantiuk ◽  
C. Hervás-Martínez

Data augmentation is rapidly gaining attention in machine learning. Synthetic data can be generated by simple transformations or through the data distribution. In the latter case, the main challenge is to estimate the label associated to new synthetic patterns. This paper studies the effect of generating synthetic data by convex combination of patterns and the use of these as unsupervised information in a semi-supervised learning framework with support vector machines, avoiding thus the need to label synthetic examples. We perform experiments on a total of 53 binary classification datasets. Our results show that this type of data over-sampling supports the well-known cluster assumption in semi-supervised learning, showing outstanding results for small high-dimensional datasets and imbalanced learning problems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
William Das ◽  
Shubh Khanna

AbstractAccurate and efficient detection of attention-deficit/hyperactivity disorder (ADHD) is critical to ensure proper treatment for affected individuals. Current clinical examinations, however, are inefficient and prone to misdiagnosis, as they rely on qualitative observations of perceived behavior. We propose a robust machine learning based framework that analyzes pupil-size dynamics as an objective biomarker for the automated detection of ADHD. Our framework integrates a comprehensive pupillometric feature engineering and visualization pipeline with state-of-the-art binary classification algorithms and univariate feature selection. The support vector machine classifier achieved an average 85.6% area under the receiver operating characteristic (AUROC), 77.3% sensitivity, and 75.3% specificity using ten-fold nested cross-validation (CV) on a declassified dataset of 50 patients. 218 of the 783 engineered features, including fourier transform metrics, absolute energy, consecutive quantile changes, approximate entropy, aggregated linear trends, as well as pupil-size dilation velocity, were found to be statistically significant differentiators (p < 0.05), and provide novel behavioral insights into associations between pupil-size dynamics and the presence of ADHD. Despite a limited sample size, the strong AUROC values highlight the robustness of the binary classifiers in detecting ADHD—as such, with additional data, sensitivity and specificity metrics can be substantially augmented. This study is the first to apply machine learning based methods for the detection of ADHD using solely pupillometrics, and highlights its strength as a potential discriminative biomarker, paving the path for the development of novel diagnostic applications to aid in the detection of ADHD using oculometric paradigms and machine learning.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1524
Author(s):  
Cho-Hee Kim ◽  
Subrata Bhattacharjee ◽  
Deekshitha Prakash ◽  
Suki Kang ◽  
Nam-Hoon Cho ◽  
...  

The optimal diagnostic and treatment strategies for prostate cancer (PCa) are constantly changing. Given the importance of accurate diagnosis, texture analysis of stained prostate tissues is important for automatic PCa detection. We used artificial intelligence (AI) techniques to classify dual-channel tissue features extracted from Hematoxylin and Eosin (H&E) tissue images, respectively. Tissue feature engineering was performed to extract first-order statistic (FOS)-based textural features from each stained channel, and cancer classification between benign and malignant was carried out based on important features. Recursive feature elimination (RFE) and one-way analysis of variance (ANOVA) methods were used to identify significant features, which provided the best five features out of the extracted six features. The AI techniques used in this study for binary classification (benign vs. malignant and low-grade vs. high-grade) were support vector machine (SVM), logistic regression (LR), bagging tree, boosting tree, and dual-channel bidirectional long short-term memory (DC-BiLSTM) network. Further, a comparative analysis was carried out between the AI algorithms. Two different datasets were used for PCa classification. Out of these, the first dataset (private) was used for training and testing the AI models and the second dataset (public) was used only for testing to evaluate model performance. The automatic AI classification system performed well and showed satisfactory results according to the hypothesis of this study.


2021 ◽  
Author(s):  
Bon San Koo ◽  
Seongho Eun ◽  
Kichul Shin ◽  
Hyemin Yoon ◽  
Chaelin Hong ◽  
...  

Abstract Background: We developed a model to predict remissions in patients treated with biologic disease-modifying anti-rheumatic drugs (bDMARDs) and to identify important clinical features associated with remission using explainable artificial intelligence (XAI).Methods: We gathered the follow-up data of 1204 patients treated with bDMARDs (etanercept, adalimumab, golimumab, infliximab, abatacept, and tocilizumab) from the Korean College of Rheumatology Biologics and Targeted Therapy Registry. Remission was predicted at one-year follow-up using baseline clinical data obtained at the time of enrollment. Machine learning methods (e.g., lasso, ridge, support vector machine, random forest, and XGBoost) were used for the predictions. The Shapley additive explanation (SHAP) value was used for interpretability of the predictions.Results: The ranges for accuracy and area under the receiver operating characteristic of the newly developed machine learning model for predicting remission were 52.8%–72.9% and 0.511–0.694, respectively. The Shapley plot in XAI showed that the impacts of the variables on predicting remission differed for each bDMARD. The most important features were age for adalimumab, rheumatoid factor for etanercept, erythrocyte sedimentation rate for infliximab and golimumab, disease duration for abatacept, and C-reactive protein for tocilizumab, with mean SHAP values of -0.250, -0.234, -0.514, -0.227, -0.804, and 0.135, respectively.Conclusions: Our proposed machine learning model successfully identified clinical features that were predictive of remission in each of the bDMARDs. This approach may be useful for improving treatment outcomes by identifying clinical information related to remissions in patients with rheumatoid arthritis.


Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2133
Author(s):  
Francisco O. Cortés-Ibañez ◽  
Sunil Belur Nagaraj ◽  
Ludo Cornelissen ◽  
Gerjan J. Navis ◽  
Bert van der Vegt ◽  
...  

Cancer incidence is rising, and accurate prediction of incident cancers could be relevant to understanding and reducing cancer incidence. The aim of this study was to develop machine learning (ML) models that could predict an incident diagnosis of cancer. Participants without any history of cancer within the Lifelines population-based cohort were followed for a median of 7 years. Data were available for 116,188 cancer-free participants and 4232 incident cancer cases. At baseline, socioeconomic, lifestyle, and clinical variables were assessed. The main outcome was an incident cancer during follow-up (excluding skin cancer), based on linkage with the national pathology registry. The performance of three ML algorithms was evaluated using supervised binary classification to identify incident cancers among participants. Elastic net regularization and Gini index were used for variables selection. An overall area under the receiver operator curve (AUC) <0.75 was obtained, the highest AUC value was for prostate cancer (random forest AUC = 0.82 (95% CI 0.77–0.87), logistic regression AUC = 0.81 (95% CI 0.76–0.86), and support vector machines AUC = 0.83 (95% CI 0.78–0.88), respectively); age was the most important predictor in these models. Linear and non-linear ML algorithms including socioeconomic, lifestyle, and clinical variables produced a moderate predictive performance of incident cancers in the Lifelines cohort.


Sign in / Sign up

Export Citation Format

Share Document