scholarly journals A Safety Warning Algorithm Based on Axis Aligned Bounding Box Method to Prevent Onsite Accidents of Mobile Construction Machineries

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7075
Author(s):  
Cynthia Changxin Wang ◽  
Mudan Wang ◽  
Jun Sun ◽  
Mohammad Mojtahedi

Mobile construction machineries are accident-prone on a dynamic construction site, as the site environment is constantly changing and continuous safety monitoring by human beings is impossible. These accidents usually happen in the form of machinery overturning or collapsing into risk areas, including the foundation pit, slopes, or soft soil area. Therefore, preventing mobile construction machineries from entering risk areas is the key. However, currently, there is a lack of practical safety management techniques to achieve this. Utilizing a wireless sensor device to collect the location information of mobile construction machineries, this research develops a safety warning algorithm to prevent the machineries moving into risk area and reduces onsite overturning or collapsing accidents. A modified axis aligned bounding box method is proposed according to the movement patterns of mobile construction machineries, and the warning algorithm is developed based on the onsite safety management regulations. The algorithm is validated in a real case simulation when machinery enters the warning zone. The simulation results showed that the overall algorithm combining the location sensing technology and the modified bounding box method could detect risk and give warnings in a timely manner. This algorithm can be implemented for the safety monitoring of mobile construction machineries in daily onsite management.

Author(s):  
Dan Xin

The effective construction of safety monitoring system at construction site depends on perfect management system and advanced technical support. And the lack of information technology platform, resulting in reduced management efficiency, information is not accurate and other issues. Based on the construction site safety monitoring system to achieve the goal, to do a good job in advance prevention, to take the latest information collection technology RFID and BIM integrated comprehensive and effective monitoring of the construction site, constitute the main technology in the monitoring system, thus ensuring the construction site safety monitoring efficiency , Comprehensive, real-time, etc., on the management and technical two points to achieve the construction site safety monitoring, improve the quality of safety management.


2021 ◽  
Vol 13 (2) ◽  
pp. 826
Author(s):  
Meiling Zhou ◽  
Xiuli Feng ◽  
Kaikai Liu ◽  
Chi Zhang ◽  
Lijian Xie ◽  
...  

Influenced by climate change, extreme weather events occur frequently, and bring huge impacts to urban areas, including urban waterlogging. Conducting risk assessments of urban waterlogging is a critical step to diagnose problems, improve infrastructure and achieve sustainable development facing extreme weathers. This study takes Ningbo, a typical coastal city in the Yangtze River Delta, as an example to conduct a risk assessment of urban waterlogging with high-resolution remote sensing images and high-precision digital elevation models to further analyze the spatial distribution characteristics of waterlogging risk. Results indicate that waterlogging risk in the city proper of Ningbo is mainly low risk, accounting for 36.9%. The higher-risk and medium-risk areas have the same proportions, accounting for 18.7%. They are followed by the lower-risk and high-risk areas, accounting for 15.5% and 9.6%, respectively. In terms of space, waterlogging risk in the city proper of Ningbo is high in the south and low in the north. The high-risk area is mainly located to the west of Jiangdong district and the middle of Haishu district. The low-risk area is mainly distributed in the north of Jiangbei district. These results are consistent with the historical situation of waterlogging in Ningbo, which prove the effectiveness of the risk assessment model and provide an important reference for the government to prevent and mitigate waterlogging. The optimized risk assessment model is also of importance for waterlogging risk assessments in coastal cities. Based on this model, the waterlogging risk of coastal cities can be quickly assessed, combining with local characteristics, which will help improve the city’s capability of responding to waterlogging disasters and reduce socio-economic loss.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Dinesh Bhandari ◽  
Rajeev Joshi ◽  
Raju Raj Regmi ◽  
Nripesh Awasthi

Soil erosion is a major concern for the environment and natural resources leading to a serious threat to agricultural productivity and one of the major causes of land degradation in the mid-hills region of Nepal. An accurate assessment of soil erosion is needed to reduce the problem of soil loss in highly fragile mountainous areas. The present study aimed to assess spatial soil loss rate and identified risk areas and their perceived impact on agricultural productivity by using the Revised Morgan–Morgan–Finney (RMMF) model and social survey in the Rangun watershed of Dadeldhura district, Nepal. Soil erosion was assessed by using data on soil, digital elevation model, rainfall, land use, and land cover visually interpreted from multitemporal satellite images, and ILWIS 3.3 academic software was used to perform the model. A household questionnaire survey (n = 120) and focus group discussion (n = 2) in identified risk areas were carried out to understand the people’s perception towards soil erosion and its impact on agricultural productivity. The predicted average soil erosions from the forest, agriculture, and barren land were 2.7 t ha−1 yr−1, 53.73 t ha−1 yr−1, and 462.59 t ha−1 yr−1, respectively. The erosion risk area under very low to low, moderate to moderately high, and high to very high covers 92.32%, 4.96%, and 2.73%, respectively. It indicates that the rate of soil erosion was lower in forest areas, whereas it was higher in the barren land. The cropped area of the watershed has been reduced by 2.96 ha−1 yr−1, and productivity has been decreased by 0.238 t ha−1 yr−1. The impacts such as removal of topsoil (weighted mean = 4.19) and gully formation (weighted mean = 3.56) were the highest perceived factors causing productivity decline due to erosion. People perceived the impact of erosion in agricultural productivity differently ( ∗ significant at P ≤ 0.05 ). The study concluded that, comparatively, barren and agricultural lands seem more susceptible to erosion, so the long-term conservation and management investment in susceptible areas for restoration, protection, and socioeconomic support contribute significantly to land rehabilitation in the Rangun watershed.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Qizhi Hu ◽  
Qiang Zou ◽  
Zhigang Ding ◽  
Zhaodong Xu

The excavation unloading of deep foundation pits in soft soil areas often produces negative excess pore water pressure. The rebound deformation of soil on the excavation surface of the foundation pit can be predicted reliably through the accurate expression of relevant variation laws. In combination with the principle of effective stress and the general equation of unidirectional seepage consolidation, an equation for calculating the rebound deformation from the bottom in the process of foundation pit excavation unloading was obtained. Additionally, a triaxial unloading test was adopted to simulate the excavation unloading processes for actual foundation pit engineering. After studying the variation law of the excess pore water pressure generated by excavation unloading, it was found that the negative excess pore water pressure increased with increasing unloading rate, while the corresponding peak value decreased with increasing confining pressure. The equation for rebound calculation was verified through a comparison with relevant measured data from actual engineering. Therefore, it is considered that the equation can reliably describe the rebound deformation law of the base. This paper aims to guide the design and construction of deep foundation pits in soft soil areas.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yousheng Deng ◽  
Zhihe Cheng ◽  
Mengzhen Cai ◽  
Yani Sun ◽  
Chengpu Peng

Bamboo is highly renewable and biodegradable with good short-term strength, which meets the requirement for temporal support structures in shallow foundation pits. Based on this, we conducted a laboratory model test on the dentate bamboo micropile support structure combined with environmentally friendly building materials and new type of piles, to explore the stress characteristics, stress change regularity, and the support effect of the system in soft soil foundation pits. The results show that the earth pressure on the pile sides above the excavation surface gradually decreases with an increase in the excavation depth. The bending deformation of the bamboo pile was also significant. The results also show that the earth pressure and the pile strain below the excavation surface change slightly during the excavation process. When the short sides of the foundation pit were loaded, the highest strain was recorded in the piles 4 and 11. A maximum strain of 358.93 με was recorded, and the maximum displacement of the pile in the top part was obtained to be only 2.14 mm. The most subsidence of dentate pile obtained is only 1.88 mm, whereas that of the single-row pile is 2.35 mm. Compared to the traditional single-row pile, the dentate piles can effectively reduce the horizontal deformation as well as the surface subsidence effectively. They can also support more external lateral load, and hence maintain the foundation stability and give better support. The results provide a theoretical basis for ecological bamboo support technology and have great value to be promoted.


2019 ◽  
Vol 136 ◽  
pp. 04045
Author(s):  
Yiteng Xu ◽  
Feng Xu ◽  
Peirong Deng ◽  
Bin Li ◽  
Zhifa Yu ◽  
...  

Axial force monitoring of steel support is one of the important factors for foundation pit safety monitoring. In the monitoring of steel support, there are many problems, such as unreasonable installation of axonometer, irregular monitoring behavior of axonometer, incomplete analysis of axial force and imperfect early warning system. Collecting many engineering cases, and in-depth analysis and research on the problems and irregular behavior of steel support axial force monitoring in every link. The influencing factors and control measures of steel support axial force are discussed in detail, and some useful conclusions are obtained. It has been applied in the actual monitoring work and achieved good results. It is of great significance to guide subway safety construction and promote the development of axle force monitoring industry.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Junsheng Chen ◽  
Chen Lin ◽  
Shuzhuo Liu ◽  
Haihong Mo

In addition to the vibration loads caused by offshore structure construction, the offshore foundation pit can also be affected by additional hydraulic loads such as waves, tides, and typhoons, hindering our understanding of the mechanical performance of the foundation pit supporting structure. In order to illuminate this mechanical performance under waves, tides, hammering, and unbalanced loads, this paper analyzed the supporting structure with theoretical and numerical simulations. The results were verified with field monitoring data. Moreover, the influences of loads, including construction vibration loads and unbalanced loads, on structure and soil were discussed. By applying these results to the engineering design, this research could provide a reference for studying mechanical properties of relevant supporting structures and the construction of offshore foundation pits.


Sign in / Sign up

Export Citation Format

Share Document