scholarly journals Experimental Study on Vibration and Noise Characteristics of Steel-Concrete Railway Bridge

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7964
Author(s):  
Lucjan Janas

The paper presents the results of vibroacoustic tests of a plate girder railway bridge consisting of two parallel dilated structures and a common ballast trough. The requirements currently set for railway bridges relate to, among others, vibrations considered as one of the criteria for traffic safety and to noise emissions that may pose a threat to the environment. In this article, the results of tests conducted on vibrations of elements of the analyzed structure are presented, and the level of these vibrations in terms of meeting the requirements of the European standards is assessed. Vibrating criteria of structure performance were checked, and safety was assessed. The results of noise measurements in the vicinity of the analyzed bridge are also presented, and the environmental impact of this structure is determined. The test results show that the bridge meets the requirements for vibration acceleration and noise. An increased acoustic emission in the analyzed case does not pose a significant threat, but if this type of structure was on high supports in an urbanized area, it would be a nuisance to the environment.

2018 ◽  
Vol 69 (6) ◽  
pp. 1352-1354
Author(s):  
Anamaria Feier ◽  
Oana Roxana Chivu

The problem of corrosion for old steel bridges in operation is often solved by direct replacement of elements or structure. Only a few studies have been done to determine the efforts influenced by corrosion in those elements. In general, it is considered that a corroded element has exceeded the bearing capacity and should be replaced, but if the corroded element is secondary it could be treated and kept. A factor in the rehabilitation of an old steel bridge in operation is the aspect of structure. If the structure is corroded, rehabilitation decision is taken is easier. Lamellar tearing describes the cracking that occurs beneath the weld and can be characterized as a brittle failure of steel, in the direction perpendicular to the plane of rolling. The paper presents a comprehensive study on lamellar tearing and summarizes some conclusions about the prevention of them. The conclusions will be exemplified in the case of a railway bridge, with a main truss girder. The paper presents also some observations regarding the stress analysis in fillet welds, resulting from the engineering practice.


2011 ◽  
Vol 71-78 ◽  
pp. 4501-4505
Author(s):  
Ming Chen ◽  
Wan Zhou

Although modern bridge are carefully designed and well constructed, damage may occur in them due to unexpected causes. Currently, many different techniques have been proposed and investigated in bridge condition assessment. However, evaluation efficiency of condition assessment has not been paid much attention by the researchers. A fast evaluation of the urban railway bridge condition based on the cloud computing is presented. In this paper dynamic FE model and Artificial neural networks technique is applied to model updating. The cloud computing model provides the basis for fast analyses. It was found that when applied to the actually railway bridges, the proposed method provided results similar to those obtained by experts, but can improve efficiency of bridge


2018 ◽  
Vol 53 ◽  
pp. 04021
Author(s):  
SHAO Yong ◽  
LIU Xiao-li ◽  
ZHU Jin-jun

Industrial alkali slag is the discharge waste in the process of alkali production. About one million tons of alkali slag is discharged in China in one year. It is a burden on the environment, whether it is directly stacked or discharged into the sea. If we can realize the use of resources, it is a multi-pronged move, so alkali slag is used to improve solidified marine soft soil in this paper. The test results show that the alkali residue can effectively improve the engineering properties of marine soft soil. Among them, the unconfined compressive strength and compressive modulus are increased by about 10 times, and the void ratio and plasticity index can all reach the level of general clay. It shows that alkali slag has the potential to improve marine soft soil and can be popularized in engineering.


2015 ◽  
Vol 60 (4) ◽  
pp. 2821-2826 ◽  
Author(s):  
A. Wierzba ◽  
S. Mróz ◽  
P. Szota ◽  
A. Stefanik ◽  
R. Mola

The paper presents the results of the experimental study of the three-layer Al-Mg-Al sheets rolling process by the ARB method. The tests carried out were limited to single-pass symmetric and asymmetric rolling processes. An Al-Mg-Al package with an initial thickness of 4 mm (1-2-1 mm) was subjected to the process of rolling with a relative reduction of 50%. To activate the shear band in the strip being deformed, an asymmetry factor of av=2 was applied. From the test results, an increase in the tensile strength of the multi-layer Al-Mg-Al sheets obtained from the asymmetric process was observed. Microhardness tests did not show any significant differences in aluminium layer between respective layers of sheets obtained from the symmetric and the asymmetric process. By contrast, for the magnesium layer, an increase in microhardness from 72 HV to 79 HV could be observed for the asymmetric rolling. The analysis of the produced Al-Mg-Al sheets shows that the good bond between individual layers and grain refinement in the magnesium layer contributed to the obtaining of higher mechanical properties in the multi-layer sheets produced in the asymmetric process compared to the sheets obtained from the symmetric process.


2011 ◽  
Vol 42 (10) ◽  
pp. 9-14
Author(s):  
L.Y. Liu ◽  
J.Y. Li ◽  
X.J. Yin

To study the vibration reduction performance of damped rail, we take the standard rail and labyrinth constrained damped rail as the study target. By testing the vibration performance of both standard rail and labyrinth constrained damped rail in an anechoic room, we use the time-domain analysis to study the vibration changes with time passing. The results showed that: the labyrinth constrained damped rail vibration can effectively reduce the vibration amplitude and duration. Under the radial impact load, compared to the standard rail, vibration acceleration attenuation of the labyrinth constrained damped rail is 5% −19%, time of vibration and attenuation greater than 94%; under the axial impact load, compared to the standard rail, vibration acceleration attenuation of the labyrinth constrained damped rail is 9% −21%, time of vibration and attenuation greater than 92%. The results have provided an experimental basis for the design of new constrained damped rail.


2010 ◽  
Vol 97-101 ◽  
pp. 1863-1866
Author(s):  
Liang Yang ◽  
Li Xu

Performance of tool has always been a puzzle in the course of high manganese steel drilling. In this paper, improvement of drill tool is been done on drill bit structure and parameters of cutting tip by means of analyzing geometric parameter. By utilizing simulation method correctly, the influence of bit parameter on drilling force is analyzed. Meanwhile, by adopting the way of dividing into groups, comparison experiment between improved and no improved has been done. The comparison analysis of test results is carried out including tool life, wear and drilling force. The conclusion showed that the improved bit has better performance.


2006 ◽  
Vol 13-14 ◽  
pp. 117-124 ◽  
Author(s):  
James J. Hensman ◽  
C.V. Cristodaro ◽  
Gareth Pierce ◽  
Keith Worden

An acoustic emission test was simulated using a three point bend specimen and an artificial AE source. Waveform data was recorded as the sample was cyclically loaded in three point bending, and the cross correlation coefficient of the waveforms was used to measure the repeatability of the test. Results were twofold: the stress state of a specimen affects the ultrasonic propagation therein; and the coupling condition of a transducer may not remain constant during a test.


Sign in / Sign up

Export Citation Format

Share Document