scholarly journals Toward Modeling Psychomotor Performance in Karate Combats Using Computer Vision Pose Estimation

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8378
Author(s):  
Jon Echeverria ◽  
Olga C. Santos

Technological advances enable the design of systems that interact more closely with humans in a multitude of previously unsuspected fields. Martial arts are not outside the application of these techniques. From the point of view of the modeling of human movement in relation to the learning of complex motor skills, martial arts are of interest because they are articulated around a system of movements that are predefined, or at least, bounded, and governed by the laws of Physics. Their execution must be learned after continuous practice over time. Literature suggests that artificial intelligence algorithms, such as those used for computer vision, can model the movements performed. Thus, they can be compared with a good execution as well as analyze their temporal evolution during learning. We are exploring the application of this approach to model psychomotor performance in Karate combats (called kumites), which are characterized by the explosiveness of their movements. In addition, modeling psychomotor performance in a kumite requires the modeling of the joint interaction of two participants, while most current research efforts in human movement computing focus on the modeling of movements performed individually. Thus, in this work, we explore how to apply a pose estimation algorithm to extract the features of some predefined movements of Ippon Kihon kumite (a one-step conventional assault) and compare classification metrics with four data mining algorithms, obtaining high values with them.

2021 ◽  
Vol 8 (4) ◽  
pp. 47
Author(s):  
Micaela Porta ◽  
Massimiliano Pau ◽  
Bruno Leban ◽  
Michela Deidda ◽  
Marco Sorrentino ◽  
...  

Among the functional limitations associated with hip osteoarthritis (OA), the alteration of gait capabilities represents one of the most invalidating as it may seriously compromise the quality of life of the affected individual. The use of quantitative techniques for human movement analysis has been found valuable in providing accurate and objective measures of kinematics and kinetics of gait in individuals with hip OA, but few studies have reported in-depth analyses of lower limb joint kinematics during gait and, in particular, there is a scarcity of data on interlimb symmetry. Such aspects were investigated in the present study which tested 11 individuals with hip OA (mean age 68.3 years) and 11 healthy controls age- and sex-matched, using 3D computerized gait analysis to perform point-by-point comparisons of the joint angle trends of hip, knee, and ankle. Angle-angle diagrams (cyclograms) were also built to compute several parameters (i.e., cyclogram area and orientation and Trend Symmetry) from which to assess the degree of interlimb symmetry. The results show that individuals with hip OA exhibit peculiar gait patterns characterized by severe modifications of the physiologic trend at hip level even in the unaffected limb (especially during the stance phase), as well as minor (although significant) alterations at knee and ankle level. The symmetry analysis also revealed that the effect of the disease in terms of interlimb coordination is present at knee joint as well as hip, while the ankle joint appears relatively preserved from specific negative effects from this point of view. The availability of data on such kinematic adaptations may be useful in supporting the design of specific rehabilitative strategies during both preoperative and postoperative periods.


2021 ◽  
Vol 10 ◽  
pp. 117957272110223
Author(s):  
Thomas Hellsten ◽  
Jonny Karlsson ◽  
Muhammed Shamsuzzaman ◽  
Göran Pulkkis

Background: Several factors, including the aging population and the recent corona pandemic, have increased the need for cost effective, easy-to-use and reliable telerehabilitation services. Computer vision-based marker-less human pose estimation is a promising variant of telerehabilitation and is currently an intensive research topic. It has attracted significant interest for detailed motion analysis, as it does not need arrangement of external fiducials while capturing motion data from images. This is promising for rehabilitation applications, as they enable analysis and supervision of clients’ exercises and reduce clients’ need for visiting physiotherapists in person. However, development of a marker-less motion analysis system with precise accuracy for joint identification, joint angle measurements and advanced motion analysis is an open challenge. Objectives: The main objective of this paper is to provide a critical overview of recent computer vision-based marker-less human pose estimation systems and their applicability for rehabilitation application. An overview of some existing marker-less rehabilitation applications is also provided. Methods: This paper presents a critical review of recent computer vision-based marker-less human pose estimation systems with focus on their provided joint localization accuracy in comparison to physiotherapy requirements and ease of use. The accuracy, in terms of the capability to measure the knee angle, is analysed using simulation. Results: Current pose estimation systems use 2D, 3D, multiple and single view-based techniques. The most promising techniques from a physiotherapy point of view are 3D marker-less pose estimation based on a single view as these can perform advanced motion analysis of the human body while only requiring a single camera and a computing device. Preliminary simulations reveal that some proposed systems already provide a sufficient accuracy for 2D joint angle estimations. Conclusions: Even though test results of different applications for some proposed techniques are promising, more rigour testing is required for validating their accuracy before they can be widely adopted in advanced rehabilitation applications.


2017 ◽  
Vol 61 ◽  
pp. 22-39 ◽  
Author(s):  
Weichen Zhang ◽  
Zhiguang Liu ◽  
Liuyang Zhou ◽  
Howard Leung ◽  
Antoni B. Chan

2007 ◽  
Vol 111 (1120) ◽  
pp. 389-396 ◽  
Author(s):  
G. Campa ◽  
M. R. Napolitano ◽  
M. Perhinschi ◽  
M. L. Fravolini ◽  
L. Pollini ◽  
...  

Abstract This paper describes the results of an effort on the analysis of the performance of specific ‘pose estimation’ algorithms within a Machine Vision-based approach for the problem of aerial refuelling for unmanned aerial vehicles. The approach assumes the availability of a camera on the unmanned aircraft for acquiring images of the refuelling tanker; also, it assumes that a number of active or passive light sources – the ‘markers’ – are installed at specific known locations on the tanker. A sequence of machine vision algorithms on the on-board computer of the unmanned aircraft is tasked with the processing of the images of the tanker. Specifically, detection and labeling algorithms are used to detect and identify the markers and a ‘pose estimation’ algorithm is used to estimate the relative position and orientation between the two aircraft. Detailed closed-loop simulation studies have been performed to compare the performance of two ‘pose estimation’ algorithms within a simulation environment that was specifically developed for the study of aerial refuelling problems. Special emphasis is placed on the analysis of the required computational effort as well as on the accuracy and the error propagation characteristics of the two methods. The general trade offs involved in the selection of the pose estimation algorithm are discussed. Finally, simulation results are presented and analysed.


2021 ◽  
Vol 24 (3) ◽  
pp. 1-40
Author(s):  
Mathias-Felipe de-Lima-Santos ◽  
Ramón Salaverría

Journalism is at a radical point of change that requires organizations to come up with new ideas and formats for news reporting. Additionally, the notable surge of data, sensors and technological advances in the mobile segment has brought immeasurable benefits to many fields of journalistic practice (data journalism in particular). Given the relative novelty and complexity of implementing artificial intelligence (AI) in journalism, few areas have managed to deploy tailored AI solutions in the media industry. In this study, through a mixed-method approach that combines both participant observations and interviews, we explain the hurdles and obstacles to deploying computer vision news projects, a subset of AI, in a leading Latin American news organization, the Argentine newspaper La Nación. Our results highlight four broad difficulties in implementing computer vision projects that involve satellite imagery: a lack of high-resolution imagery, the unavailability of technological infrastructure, the absence of qualified personnel to develop such codes, and a lengthy and costly implementation process that requires significant investment. This article concludes with a discussion of the centrality of AI solutions in the hands of big tech corporations.


2021 ◽  
Vol 5 (2) ◽  
pp. 153
Author(s):  
Khotibul Umam ◽  
Abdul Muhid

Technological development has changed human life style. Child's world that was once filled with traditional games has now been eroded by technological advances. Nowadays online games that replace traditional games are not only favored by children, almost all levels of human age like playing online games. But behind it all there is a negative impact that haunts its users. This study aims to reveal the negative side of using online games from the point of view of Islam and Islamic Psychology. The technique used is literature review by compiling some previous articles. The results showed that excessive use of online games will give a bad impact on the physical and psychological users, such as visual impairment, sleep disturbance, addiction, violence and stress. The use of online games is also considered more disadvantage than the benefits and it’s seen as an activity that wastes time, and it is prohibited in Islam.


2021 ◽  
Author(s):  
Hannah L. Cornman ◽  
Jan Stenum ◽  
Ryan T. Roemmich

ABSTRACTAssessment of repetitive movements (e.g., finger tapping) is a hallmark of motor examinations in several neurologic populations. These assessments are traditionally performed by a human rater via visual inspection; however, advances in computer vision offer potential for remote, quantitative assessment using simple video recordings. Here, we evaluated a pose estimation approach for measurement of human movement frequency from smartphone videos. Ten healthy young participants provided videos of themselves performing five repetitive movement tasks (finger tapping, hand open/close, hand pronation/supination, toe tapping, leg agility) at four target frequencies (1-4 Hz). We assessed the ability of a workflow that incorporated OpenPose (a freely available whole-body pose estimation algorithm) to estimate movement frequencies by comparing against manual frame-by-frame (i.e., ground-truth) measurements for all tasks and target frequencies using repeated measures ANOVA, Pearson’s correlations, and intraclass correlations. Our workflow produced largely accurate estimates of movement frequencies; only the hand open/close task showed a significant difference in the frequencies estimated by pose estimation and manual measurement (while statistically significant, these differences were small in magnitude). All other tasks and frequencies showed no significant differences between pose estimation and manual measurement. Pose estimation-based detections of individual events (e.g., finger taps, hand closures) showed strong correlations with manual detections for all tasks and frequencies. In summary, our pose estimation-based workflow accurately tracked repetitive movements in healthy adults across a range of tasks and movement frequencies. Future work will test this approach as a fast, low-cost, accessible approach to quantitative assessment of repetitive movements in clinical populations.


2015 ◽  
Vol 63 ◽  
pp. 10-21 ◽  
Author(s):  
Claudiu Pozna ◽  
Radu-Emil Precup ◽  
Péter Földesi

2021 ◽  
Author(s):  
N.V. Panov ◽  
I.B. Komkov ◽  
A.V. Savelyev ◽  
N.A. Loginova

The article deals with the martial arts of the East (MAE) in relation to the organizational system of A.A. Bogdanov, from the point of view of their life stability. It is necessary for the definition of MAE as an art, not a physical education and sports. It contributed to the identification of technical immunity and a strict hierarchy of these systems. It allowed us to identify MAE as a system that promotes the development of the talent of individual, forming a creative personality. It became possible to solve the problem of consciousness through a conscious choice of the desired element of the system, depending on the range of situations. The considered MAE became a similarity of living system and an analogy of human brain. Considering an information-hierarchical structure, it was given the name “supraorganizational”, because the process of its “reproduction” and the significance of this process for the system were discovered. The identification of MAE as a living creative structure capable of interacting with space, in order to acquire and transfer properties to influence the recipient, made it possible to define them as the basis for understanding the art, particularly fine art. Technical immunity and technical homeostasis were able to justify the emergence of the immunological android as a node in the technology of living systems between the individual and the artificial intelligence.


Sign in / Sign up

Export Citation Format

Share Document