scholarly journals Dynamic Packet Duplication for Industrial URLLC

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 587
Author(s):  
David Segura ◽  
Emil J. Khatib ◽  
Raquel Barco

The fifth-generation (5G) network is presented as one of the main options for Industry 4.0 connectivity. To comply with critical messages, 5G offers the Ultra-Reliable and Low latency Communications (URLLC) service category with a millisecond end-to-end delay and reduced probability of failure. There are several approaches to achieve these requirements; however, these come at a cost in terms of redundancy, particularly the solutions based on multi-connectivity, such as Packet Duplication (PD). Specifically, this paper proposes a Machine Learning (ML) method to predict whether PD is required at a specific data transmission to successfully send a URLLC message. This paper is focused on reducing the resource usage with respect to pure static PD. The concept was evaluated on a 5G simulator, comparing between single connection, static PD and PD with the proposed prediction model. The evaluation results show that the prediction model reduced the number of packets sent with PD by 81% while maintaining the same level of latency as a static PD technique, which derives from a more efficient usage of the network resources.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2489
Author(s):  
David Segura ◽  
Emil J. Khatib ◽  
Jorge Munilla ◽  
Raquel Barco

The fifth-generation (5G) network is presented as one of the main options for Industry 4.0 connectivity. Ultra-Reliable and Low Latency Communications (URLLC) is the 5G service category used by critical mechanisms, with a millisecond end-to-end delay and reduced probability of failure. 5G defines new numerologies, together with mini-slots for a faster scheduling. The main challenge of this is to select the appropriate numerology according to radio conditions. This fact is very important in industrial scenarios, where the fundamental problems are interference and multipath propagation, due to the presence of concrete walls and large metallic machinery and structures. Therefore, this paper is focused on analyzing the impact of the numerology selection on the delay experienced at radio link level for a remote-control service. The study, which has been carried out in a simulated cellular factory environment, has been performed for different packet sizes and channel conditions, focusing on outliers. Evaluation results show that not always a higher numerology, with a shorter slot duration, is appropriate for this type of service, particularly under Non-Line-of-Sight (NLOS) conditions.


2018 ◽  
Vol 10 (10) ◽  
pp. 3626 ◽  
Author(s):  
Yousaf Zikria ◽  
Sung Kim ◽  
Muhammad Afzal ◽  
Haoxiang Wang ◽  
Mubashir Rehmani

The Fifth generation (5G) network is projected to support large amount of data traffic and massive number of wireless connections. Different data traffic has different Quality of Service (QoS) requirements. 5G mobile network aims to address the limitations of previous cellular standards (i.e., 2G/3G/4G) and be a prospective key enabler for future Internet of Things (IoT). 5G networks support a wide range of applications such as smart home, autonomous driving, drone operations, health and mission critical applications, Industrial IoT (IIoT), and entertainment and multimedia. Based on end users’ experience, several 5G services are categorized into immersive 5G services, intelligent 5G services, omnipresent 5G services, autonomous 5G services, and public 5G services. In this paper, we present a brief overview of 5G technical scenarios. We then provide a brief overview of accepted papers in our Special Issue on 5G mobile services and scenarios. Finally, we conclude this paper.


LastMile ◽  
2021 ◽  
Vol 98 (6) ◽  
Author(s):  
A. Ivashkin

Today, many countries around the world are actively building fifth generation mobile networks (5G/IMT-2020). The magazine Last Mile asked the director of the Republican unitary enterprise for supervision on telecommunications "BelGIE" of the Republic of Belarus (hereinafter: State Enterprise "BelGIE") A.A. Ivashkin about the situation with the implementation of the 5G network in the Republic of Belarus.


Data ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
John Sospeter ◽  
Di Wu ◽  
Saajid Hussain ◽  
Tesfanesh Tesfa

Mobile network topology changes dynamically over time because of the high velocity of vehicles. Therefore, the concept of the data dissemination scheme in a VANET environment has become an issue of debate for many research scientists. The main purpose of VANET is to ensure passenger safety application by considering the critical emergency message. The design of the message dissemination protocol should take into consideration effective data dissemination to provide a high packet data ratio and low end-to-end delay by using network resources at a minimal level. In this paper, an effective and efficient adaptive probability data dissemination protocol (EEAPD) is proposed. EEAPD comprises a delay scheme and probabilistic approach. The redundancy ratio (r) metric is used to explain the correlation between road segments and vehicles’ density in rebroadcast probability decisions. The uniqueness of the EEAPD protocol comes from taking into account the number of road segments to decide which nodes are suitable for rebroadcasting the emergency message. The last road segment is considered in the transmission range because of the probability of it having small vehicle density. From simulation results, the proposed protocol provides a better high-packet delivery ratio and low-packet drop ratio by providing better use of the network resource within low end-to-end delay. This protocol is designed for only V2V communication by considering a beaconless strategy. the simulations in this study were conducted using Ns-3.26 and traffic simulator called “SUMO”.


Author(s):  
Hamza Mohammed Ridha Al-Khafaji ◽  
Hasan Shakir Majdi

<p>This paper scrutinizes the influence of deployment scenarios on the energy performance of fifth-generation (5G) network at various backhaul wireless frequency bands. An innovative network architecture, the hybrid centric-distributed, is employed and its energy efficiency (EE) model is analyzed. The obtained results confirm that the EE of the 5G network increases with an increasing number of small cells and degrades with an increasing frequency of wireless backhaul and radius of small cells regardless of the network architectures. Moreover, the hybrid centric-distributed architecture augments the EE when compared with the distributed architecture.</p>


2021 ◽  
Vol 9 (1) ◽  
pp. 691-697
Author(s):  
N. Sugirtham, R. Sherine Jenny

Network applications demand quality of service for enhanced call quality and increased user satisfaction. Hence, implementing queuing discipline at switches and routers in a network will govern the way packets are buffered while waiting for transmission. Queuing disciplines like first-in first-out (FIFO) queuing, priority queuing (PQ), weighted-fair queuing (WFQ), custom queuing and modified weighted round robin are more prominently deployed in network applications. These queuing disciplines help to control and manage network resources by fixing priorities for specific types of data on the network. The paper aims to analyze the quality of service parameters for various real time applications like File transfer protocol(FTP), email, database, Voice over IP(VOIP), video and web browsing,etc., and helps to optimise the use of available network resources. Moreover the quality of the network is compared using different QoS parameters such as end-to-end delay, throughput, jitter and Mean Opinion Score (MOS). This paper focuses on various queuing disciplines with low and high network traffic.


Author(s):  
Henok M. Besfat ◽  
Zelalem Hailu Gebeyehu ◽  
Sudhir K. Routray

Cellular network traffic increases rapidly, and new services are introduced every year. For proper planning and design of such networks, exact requirements must be known with good accuracy. Dimensioning is an important part of network planning and design. Dimensioning is essential to determine the network requirements. In the coming years, fifth-generation (5G) will be deployed widely. 5G infrastructure is hybrid of wireless and optical components. For 5G network dimensioning, there is a need of a hybrid model. In this paper, the authors develop mathematical expressions for 5G network dimensioning. They use ITU proposed typical 5G network provisions to estimate bandwidth, network capacity, coverage, and capital expenditures. They also establish the correlation between the optical and the wireless parts. The expressions developed in this work can be used for the fast estimation of network coverage. So, this model can play important roles for 5G network planning and design.


2021 ◽  
Author(s):  
Putty Srivi ◽  
Lavadya Nirmala Devi

Abstract Wireless Sensor Networks (WSN) are self-possessed of the devices that are capable of actuating/sensing, processing, and communicating. This is employed for enhancing the day-to-day life, moreover secure data transmission was regarded as the major challenging aspect for the deployment of data. Data dissemination is a crucial in the complex communications framework for transferring messages for any given condition on the network. The dilemma of fixing the safest efficient route was a tedious issue. Hence the secure and most reliable way will give the appropriate solution for the routing issues. Here in this paper the Trust based energy efficient route path identification by Multi-faceted biologically-inspired probabilistic Cuckoo search Node optimization algorithm (TEERP-MFBPCS)is employed to find the efficient safest route within a short period. After seeing the efficient route, the node can be distinguished upon the traffic and security. Then in the selected route, the nodal distance can be calculated through applying weighted-biased end-to-end delay-based approach for traffic analysis. Finally, the intrusion node can be detected and the performance analysis is carried.


Author(s):  
Phudit Ampririt ◽  
Ermioni Qafzezi ◽  
Kevin Bylykbashi ◽  
Makoto Ikeda ◽  
Keita Matsuo ◽  
...  

The fifth generation (5G) network is expected to be flexible to satisfy quality of service (QoS) requirements, and the software-defined network (SDN) with network slicing will be a good approach for admission control. In this paper, the authors present and compare two fuzzy-based schemes to evaluate the QoS (FSQoS). They call these schemes FSQoS1 and FSQoS2. The FSQoS1 considers three parameters: slice throughput (ST), slice delay (SD), and slice loss (SL). In FSQoS2, they consider as an additional parameter the slice reliability (SR). So, FSQoS2 has four input parameters. They carried out simulations for evaluating the performance of the proposed schemes. From simulation results, they conclude that the considered parameters have different effects on the QoS performance. The FSQoS2 is more complex than FSQoS1, but it has a better performance for evaluating QoS. When ST and SR are increasing, the QoS parameter is increased. But, when SD and SL are increasing, the QoS is decreased. When ST is 0.1, SD is 0.1, SL is 0.1, and the QoS is increased by 32.02% when SR is increased from 0.3 to 0.8.


Sign in / Sign up

Export Citation Format

Share Document