scholarly journals The Impact of the Thermal Comfort Models on the Prediction of Building Energy Consumption

2018 ◽  
Vol 10 (10) ◽  
pp. 3609 ◽  
Author(s):  
Aiman Albatayneh ◽  
Dariusz Alterman ◽  
Adrian Page ◽  
Behdad Moghtaderi

Building energy assessment software/programs use various assumptions and types of thermal comfort models to forecast energy consumption. This paper compares the results of using two major thermal comfort models (adaptive thermal comfort and the predicted mean vote (PMV) adjusted by the expectancy factor) to examine their influence on the prediction of the energy consumption for several full-scale housing experimental modules constructed on the campus of the University of Newcastle, Australia. Four test modules integrating a variety of walling types (insulated cavity brick (InsCB), cavity brick (CB), insulated reverse brick veneer (InsRBV), and insulated brick veneer (InsBV)) were used for comparing the time necessary for cooling and heating to maintain internal thermal comfort for both models. This research paper exhibits the benefits of adopting the adaptive thermal model for building structures. It shows the effectiveness of this model in helping to reduce energy consumption, increasing the thermal comfort level for the buildings, and therefore reducing greenhouse emissions.

2021 ◽  
pp. 62-74
Author(s):  
V. Deshko ◽  
◽  
N. Buyak ◽  
I. Bilous ◽  
◽  
...  

The paper highlights the topical issue of ensuring the appropriate thermal comfort level and reducing energy consumption by public buildings. Thermal modernization, in turn, allows increasing the level of thermal comfort, which is not taken into account and evaluated in practice, although the relevant standards for comfort conditions and categories of buildings to ensure comfort have been introduced in Ukraine. The aim of the study is to analyze the impact of thermal modernization on the level of energy consumption and thermal comfort. The paper analyzes the change in the level of comfort before and after thermal modernization, defines the comfortable conditions category of the building, presents the change in the mean radiant temperature, as one of the main factors of PMV change in these conditions. PMV has been found to vary from -0.7 in the cold months to 0.2 in the off-season. Changing the thermal resistance can increase the PMV. The wall of the S orientation is characterized by larger fluctuations of PMV, which is due to the inflow of solar radiation and as a consequence of increasing the mean room radiant temperature. The change in the value of energy consumption is analyzed, the class of energy efficiency and the category for providing comfortable conditions are determined. Such an approach on the example of a real building is an example for conducting energy audits and certification taking into account comfort indicators.


2020 ◽  
pp. 80-87
Author(s):  
Salem Algarni

At present, maintaining the thermal comfort in buildings is a significant challenge faced by majority of the developing countries. In this study, the impact of the cool roof on cooling and heating loads of buildings located in moderate climates is studied. The study presents a detailed simulation of a test room to estimate the impact of the cool roof on building performance in Abha, Saudi Arabia. Input parameters, such as building thermal properties, operation schedule, orientation, and climatic conditions were implemented. Furthermore, the experimental study of the test room was conducted at the main campus of King Khalid University, Abha. The results showed that the use of the cool roof reduced the energy consumption required for building cooling by approximately 52.5 kWh/m2/year; whereas the maximum increase in energy consumption owing to the winter heating is about 3.1 kWh/m2/year. The indoor thermal comfort was improved because the maximum indoor temperature decreased by 2.7 °C. The study concludes that the cool roof is an effective method to improve the indoor thermal comfort and reduce building energy consumption in Abha, Saudi Arabia and places with similar climatic conditions.


2011 ◽  
Vol 90-93 ◽  
pp. 3043-3046 ◽  
Author(s):  
Xue Bin Yang ◽  
Zhi Pan Gu ◽  
Ji Chun Yang ◽  
Guang Ping Lin

This study reviews some published literatures to survey the recent research on indoor environment quality and building energy consumption. The indoor environment quality is categorized and defined as different indices and variables. The building energy consumption can be determined by ventilation rates, thermal comfort, adaptive thermal comfort, neutral temperature, set-point temperature, indoor air quality, air velocity, and non-occupied hours. Various climates or regions such as subtropical climates in Hong Kong, Italy, three climatic zones in Greece, hot and dry climates in Africa, hot and humid climate in Thailand, are contained. The building types include office buildings, commercial buildings and school buildings, and the data can be obtained from a simulation model or the field database. It can be concluded that the indoor environment quality has a significant influence on the building energy consumption, and a validated thermal model is be a practical tool to investigate the effect of the indoor environmental parameters.


2017 ◽  
Vol 19 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Aiman Albatayneh ◽  
Dariusz Alterman ◽  
Adrian Page ◽  
Behdad Moghtaderi

Abstract The design of low energy buildings requires accurate thermal simulation software to assess the heating and cooling loads. Such designs should sustain thermal comfort for occupants and promote less energy usage over the life time of any building. One of the house energy rating used in Australia is AccuRate, star rating tool to assess and compare the thermal performance of various buildings where the heating and cooling loads are calculated based on fixed operational temperatures between 20 °C to 25 °C to sustain thermal comfort for the occupants. However, these fixed settings for the time and temperatures considerably increase the heating and cooling loads. On the other hand the adaptive thermal model applies a broader range of weather conditions, interacts with the occupants and promotes low energy solutions to maintain thermal comfort. This can be achieved by natural ventilation (opening window/doors), suitable clothes, shading and low energy heating/cooling solutions for the occupied spaces (rooms). These activities will save significant amount of operating energy what can to be taken into account to predict energy consumption for a building. Most of the buildings thermal assessment tools depend on energy-based approaches to predict the thermal performance of any building e.g. AccuRate in Australia. This approach encourages the use of energy to maintain thermal comfort. This paper describes the advantages of a temperature-based approach to assess the building’s thermal performance (using an adaptive thermal comfort model) over energy based approach (AccuRate Software used in Australia). The temperature-based approach was validated and compared with the energy-based approach using four full scale housing test modules located in Newcastle, Australia (Cavity Brick (CB), Insulated Cavity Brick (InsCB), Insulated Brick Veneer (InsBV) and Insulated Reverse Brick Veneer (InsRBV)) subjected to a range of seasonal conditions in a moderate climate. The time required for heating and/or cooling using the adaptive thermal comfort approach and AccuRate predictions were estimated. Significant savings (of about 50 %) in energy consumption in minimising the time required for heating and cooling were achieved by using the adaptive thermal comfort model.


2019 ◽  
pp. 53-65
Author(s):  
Renata Domingos ◽  
Emeli Guarda ◽  
Elaise Gabriel ◽  
João Sanches

In the last decades, many studies have shown ample evidence that the existence of trees and vegetation around buildings can contribute to reduce the demand for energy by cooling and heating. The use of green areas in the urban environment as an effective strategy in reducing the cooling load of buildings has attracted much attention, though there is a lack of quantitative actions to apply the general idea to a specific building or location. Due to the large-scale construction of high buildings, large amounts of solar radiation are reflected and stored in the canyons of the streets. This causes higher air temperature and surface temperature in city areas compared to the rural environment and, consequently, deteriorates the urban heat island effect. The constant high temperatures lead to more air conditioning demand time, which results in a significant increase in building energy consumption. In general, the shade of the trees reduces the building energy demand for air conditioning, reducing solar radiation on the walls and roofs. The increase of urban green spaces has been extensively accepted as effective in mitigating the effects of heat island and reducing energy use in buildings. However, by influencing temperatures, especially extreme, it is likely that trees also affect human health, an important economic variable of interest. Since human behavior has a major influence on maintaining environmental quality, today's urban problems such as air and water pollution, floods, excessive noise, cause serious damage to the physical and mental health of the population. By minimizing these problems, vegetation (especially trees) is generally known to provide a range of ecosystem services such as rainwater reduction, air pollution mitigation, noise reduction, etc. This study focuses on the functions of temperature regulation, improvement of external thermal comfort and cooling energy reduction, so it aims to evaluate the influence of trees on the energy consumption of a house in the mid-western Brazil, located at latitude 15 ° S, in the center of South America. The methodology adopted was computer simulation, analyzing two scenarios that deal with issues such as the influence of vegetation and tree shade on the energy consumption of a building. In this way, the methodological procedures were divided into three stages: climatic contextualization of the study region; definition of a basic dwelling, of the thermophysical properties; computational simulation for quantification of energy consumption for the four facade orientations. The results show that the façades orientated to north, east and south, without the insertion of arboreal shading, obtained higher values of annual energy consumption. With the adoption of shading, the facades obtained a consumption reduction of around 7,4%. It is concluded that shading vegetation can bring significant climatic contribution to the interior of built environments and, consequently, reduction in energy consumption, promoting improvements in the thermal comfort conditions of users.


2021 ◽  
Vol 13 (2) ◽  
pp. 762
Author(s):  
Liu Tian ◽  
Yongcai Li ◽  
Jun Lu ◽  
Jue Wang

High population density, dense high-rise buildings, and impervious pavements increase the vulnerability of cities, which aggravate the urban climate environment characterized by the urban heat island (UHI) effect. Cities in China provide unique information on the UHI phenomenon because they have experienced rapid urbanization and dramatic economic development, which have had a great influence on the climate in recent decades. This paper provides a review of recent research on the methods and impacts of UHI on building energy consumption, and the practical techniques that can be used to mitigate the adverse effects of UHI in China. The impact of UHI on building energy consumption depends largely on the local microclimate, the urban area features where the building is located, and the type and characteristics of the building. In the urban areas dominated by air conditioning, UHI could result in an approximately 10–16% increase in cooling energy consumption. Besides, the potential negative effects of UHI can be prevented from China in many ways, such as urban greening, cool material, water bodies, urban ventilation, etc. These strategies could have a substantial impact on the overall urban thermal environment if they can be used in the project design stage of urban planning and implemented on a large scale. Therefore, this study is useful to deepen the understanding of the physical mechanisms of UHI and provide practical approaches to fight the UHI for the urban planners, public health officials, and city decision-makers in China.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4084
Author(s):  
Hassan Bazazzadeh ◽  
Peiman Pilechiha ◽  
Adam Nadolny ◽  
Mohammadjavad Mahdavinejad ◽  
Seyedeh sara Hashemi safaei

A substantial share of the building sector in global energy demand has attracted scholars to focus on the energy efficiency of the building sector. The building’s energy consumption has been projected to increase due to mass urbanization, high living comfort standards, and, more importantly, climate change. While climate change has potential impacts on the rate of energy consumption in buildings, several studies have shown that these impacts differ from one region to another. In response, this paper aimed to investigate the impact of climate change on the heating and cooling energy demands of buildings as influential variables in building energy consumption in the city of Poznan, Poland. In this sense, through the statistical downscaling method and considering the most recent Typical Meteorological Year (2004–2018) as the baseline, the future weather data for 2050 and 2080 of the city of Poznan were produced according to the HadCM3 and A2 GHG scenario. These generated files were then used to simulate the energy demands in 16 building prototypes of the ASHRAE 90.1 standard. The results indicate an average increase in cooling load and a decrease in heating load at 135% and 40% , respectively, by 2080. Due to the higher share of heating load, the total thermal load of the buildings decreased within the study period. Therefore, while the total thermal load is currently under the decrease, to avoid its rise in the future, serious measures should be taken to control the increased cooling demand and, consequently, thermal load and GHG emissions.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2538
Author(s):  
Praveen K. Cheekatamarla

Electrical and thermal loads of residential buildings present a unique opportunity for onsite power generation, and concomitant thermal energy generation, storage, and utilization, to decrease primary energy consumption and carbon dioxide intensity. This approach also improves resiliency and ability to address peak load burden effectively. Demand response programs and grid-interactive buildings are also essential to meet the energy needs of the 21st century while addressing climate impact. Given the significance of the scale of building energy consumption, this study investigates how cogeneration systems influence the primary energy consumption and carbon footprint in residential buildings. The impact of onsite power generation capacity, its electrical and thermal efficiency, and its cost, on total primary energy consumption, equivalent carbon dioxide emissions, operating expenditure, and, most importantly, thermal and electrical energy balance, is presented. The conditions at which a cogeneration approach loses its advantage as an energy efficient residential resource are identified as a function of electrical grid’s carbon footprint and primary energy efficiency. Compared to a heat pump heating system with a coefficient of performance (COP) of three, a 0.5 kW cogeneration system with 40% electrical efficiency is shown to lose its environmental benefit if the electrical grid’s carbon dioxide intensity falls below 0.4 kg CO2 per kWh electricity.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7590
Author(s):  
Adam Kula ◽  
Albert Smalcerz ◽  
Maciej Sajkowski ◽  
Zygmunt Kamiński

There are many papers concerning the consumption of energy in different buildings. Most describe residential buildings, with only a few about office- or public service buildings. Few articles showcase the use of energy consumption in specific rooms of a building, directed in different geographical directions. On the other hand, many publications present methods, such as machine learning or AI, for building energy management and prediction of its consumption. These methods have limitations and represent a certain level of uncertainty. In order to compare energy consumption of different rooms, the measurements of particular building-room parameters were collected and analyzed. The obtained results showcase the effect of room location, regarding geographical directions, for the consumption of energy for heating. For south-exposed rooms, due to sun radiation, it is possible to switch heating off completely, and even overheating of 3 °C above the 22 °C temperature set point occurs. The impact of the sun radiation for rooms with a window directed east or west reached about 1 °C and lasts for a few hours before noon for the east, and until late afternoon for the west.


Sign in / Sign up

Export Citation Format

Share Document