scholarly journals Ksar Said: Building Tunisian Young People’s Critical Engagement with Their Heritage

2019 ◽  
Vol 11 (5) ◽  
pp. 1373
Author(s):  
Paola Di Giuseppantonio Di Franco ◽  
Mark Winterbottom ◽  
Fabrizio Galeazzi ◽  
Mike Gogan

This paper describes the work undertaken as part of the ‘Digital Documentation of Ksar Said’ Project. This project, funded by the British Council, combined education, history, and heritage for the digital preservation of tangible and intangible aspects of heritage associated with the 19th century Said Palace (Ksar Said) in Tunis. We produced an interactive 3D model of Ksar Said and developed learning resources to build Tunisian students’ critical engagement with their heritage through inquiry learning activities within the 3D model. We used a user-centred approach, based on pre-assessment (i.e., co-creation of contents), mid-term evaluation (i.e., feedback on contents and preliminary design of virtual activities), and post-assessment design (i.e., user trial). Our results demonstrate the potential of this novel approach to virtual learning and inform future co-design, evaluation and implementation choices for improving the generative power of three dimensional virtual replication of heritage sites in the cultural heritage sector.

2015 ◽  
Vol 31 (6) ◽  
pp. 701-711
Author(s):  
M. Vadood ◽  
M.S. Johari ◽  
A.R. Rahai

ABSTRACTIn this study a novel approach for 3D modeling of cylindrical sample of hot mix asphalt (HMA) is presented. To this end, the cylindrical sample was divided into several slices and using a developed algorithm the processed images were extended to 3D volumetric objects to reconstruct the 3D microstructure of HMA. To evaluate the efficiency of the presented 3D model for prediction of mechanical behavior, HMA was regarded as a two-phase mixture; mastic phase and aggregate phase. The asphalt binder, filler, air voids and fine aggregates were considered as mastic with viscoelastic behavior and the aggregate was considered as an elastic material. Two models (Burger and generalized Kelvin) were studied for determining viscoelastic behavior of mastic. Finally, to verify the model using Finite Element Method (FEM) the behavior of the 3D model was simulated under different uniaxial compressive loads. A good agreement was observed between the simulated results and corresponding experimental data which indicates the efficiency of the proposed model to simulate three-dimensional asphalt.


Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 322
Author(s):  
José Ignacio Rojas-Sola ◽  
Gloria del Río-Cidoncha ◽  
Ángel Coronil-García

This article shows the three-dimensional (3D) modelling and virtual reconstruction of an ancient harvesting machine developed at the beginning of the 19th century. SolidWorks software is employed to obtain the 3D model of this historical invention and its geometric documentation. The original material for the research is available on a farm located in the province of Cádiz (Spain). Thanks to the three-dimensional modelling performed, both its operation and the final assembly of this invention can be explained in detail in a coherent way. Having carried out the functional analysis, it can be verified that the machine combines well-performed chain-sprocket transmissions, which, together with complex gearboxes with parallel and bevel gears, make this reaper a very reliable machine. Furthermore, the inclusion of elements such as gimbal joints on shafts with possible misalignments, and clutches to adapt the operation of the machine to the needs of the operator, makes it highly versatile and functional without over-exerting the mechanics. From a technical point of view, the complex transmission systems, the perfect synchronization achieved between all its parts, and the combination of continuous oscillatory movements, such as that of sheaf compactors with intermittent movements as complex as that of the knotting system, are all worthy of note, and reveal the great work of engineering involved in this historical invention.


2020 ◽  
Vol 11 (23) ◽  
pp. 1 ◽  
Author(s):  
Erik Champion ◽  
Hafizur Rahaman

<p class="VARAbstract">Despite the increasing number of three-dimensional (3D) model portals and online repositories catering for digital heritage scholars, students and interested members of the general public, there are very few recent academic publications that offer a critical analysis when reviewing the relative potential of these portals and online repositories. Solid reviews of the features and functions they offer are insufficient; there is also a lack of explanations as to how these assets and their related functionality can further the digital heritage (and virtual heritage) field, and help in the preservation, maintenance, and promotion of real-world 3D heritage sites and assets. What features do they offer? How could their feature list better cater for the needs of the GLAM (galleries, libraries, archives and museums) sector? This article’s priority is to examine the useful features of 8 institutional and 11 commercial repositories designed specifically to host 3D digital models. The available features of their associated 3D viewers, where applicable, are also analysed, connecting recommendations for future-proofing with the need to address current gaps and weaknesses in the scholarly field of 3D digital heritage. Many projects do not address the requirements stipulated by charters, such as access, reusability, and preservation. The lack of preservation strategies and examples highlights the oxymoronic nature of virtual heritage (oxymoronic in the sense that the virtual heritage projects themselves are seldom preserved). To study these concerns, six criteria for gauging the usefulness of the 3D repositories to host 3D digital models and related digital assets are suggested. The authors also provide 13 features that would be useful additions for their 3D viewers.</p><p>Highlights:</p><ul><li><p>A survey of relevant features from eight institutional and eleven commercial online 3D repositories in the scholarly fieldof 3D digital heritage.</p></li><li><p>Presents a critical review of their hosting services and 3D model viewer features.</p></li><li><p>Proposes six features to enhance services of 3D repositories to support the GLAM sector, heritage scholars andheritage communities.</p></li></ul>


Author(s):  
Jingjing Wang ◽  
◽  
Fangyan Dong ◽  
Takashi Takegami ◽  
Eiroku Go ◽  
...  

A 3D (three-dimensional) pseudo-reconstruction method from a single image is presented as a novel approach reconstructing a 3D model with no prior internal knowledge of outdoors image. In the proposed method, an image is represented as a collection of sky layer, ground layer, and object layer. A visual radical coordinate system with vanishing point is established to accommodate the extracted 3D data from images. Learning method is done via the layers database. The experiment results show that the visually acceptable 3D model can be extracted less than one minute. That means a higher resolution in much shorter time, compared to conventional methods. This method can be applied to computer games, industrial measurement, archeology, architecture and visual realities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Albers ◽  
Angelika Svetlove ◽  
Justus Alves ◽  
Alexander Kraupner ◽  
Francesca di Lillo ◽  
...  

AbstractAlthough X-ray based 3D virtual histology is an emerging tool for the analysis of biological tissue, it falls short in terms of specificity when compared to conventional histology. Thus, the aim was to establish a novel approach that combines 3D information provided by microCT with high specificity that only (immuno-)histochemistry can offer. For this purpose, we developed a software frontend, which utilises an elastic transformation technique to accurately co-register various histological and immunohistochemical stainings with free propagation phase contrast synchrotron radiation microCT. We demonstrate that the precision of the overlay of both imaging modalities is significantly improved by performing our elastic registration workflow, as evidenced by calculation of the displacement index. To illustrate the need for an elastic co-registration approach we examined specimens from a mouse model of breast cancer with injected metal-based nanoparticles. Using the elastic transformation pipeline, we were able to co-localise the nanoparticles to specifically stained cells or tissue structures into their three-dimensional anatomical context. Additionally, we performed a semi-automated tissue structure and cell classification. This workflow provides new insights on histopathological analysis by combining CT specific three-dimensional information with cell/tissue specific information provided by classical histology.


2021 ◽  
Vol 29 ◽  
pp. 133-140
Author(s):  
Bin Liu ◽  
Shujun Liu ◽  
Guanning Shang ◽  
Yanjie Chen ◽  
Qifeng Wang ◽  
...  

BACKGROUND: There is a great demand for the extraction of organ models from three-dimensional (3D) medical images in clinical medicine diagnosis and treatment. OBJECTIVE: We aimed to aid doctors in seeing the real shape of human organs more clearly and vividly. METHODS: The method uses the minimum eigenvectors of Laplacian matrix to automatically calculate a group of basic matting components that can properly define the volume image. These matting components can then be used to build foreground images with the help of a few user marks. RESULTS: We propose a direct 3D model segmentation method for volume images. This is a process of extracting foreground objects from volume images and estimating the opacity of the voxels covered by the objects. CONCLUSIONS: The results of segmentation experiments on different parts of human body prove the applicability of this method.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1629
Author(s):  
Colin H. Quinn ◽  
Andee M. Beierle ◽  
Elizabeth A. Beierle

In the quest to advance neuroblastoma therapeutics, there is a need to have a deeper understanding of the tumor microenvironment (TME). From extracellular matrix proteins to tumor associated macrophages, the TME is a robust and diverse network functioning in symbiosis with the solid tumor. Herein, we review the major components of the TME including the extracellular matrix, cytokines, immune cells, and vasculature that support a more aggressive neuroblastoma phenotype and encumber current therapeutic interventions. Contemporary treatments for neuroblastoma are the result of traditional two-dimensional culture studies and in vivo models that have been translated to clinical trials. These pre-clinical studies are costly, time consuming, and neglect the study of cofounding factors such as the contributions of the TME. Three-dimensional (3D) bioprinting has become a novel approach to studying adult cancers and is just now incorporating portions of the TME and advancing to study pediatric solid. We review the methods of 3D bioprinting, how researchers have included TME pieces into the prints, and highlight present studies using neuroblastoma. Ultimately, incorporating the elements of the TME that affect neuroblastoma responses to therapy will improve the development of innovative and novel treatments. The use of 3D bioprinting to achieve this aim will prove useful in developing optimal therapies for children with neuroblastoma.


2021 ◽  
Vol 11 (8) ◽  
pp. 3635
Author(s):  
Ioannis Liritzis ◽  
Pantelis Volonakis ◽  
Spyros Vosinakis

In the field of cultural heritage, three-dimensional (3D) reconstruction of monuments is a usual activity for many professionals. The aim in this paper focuses on the new technology educational application combining science, history, and archaeology. Being involved in almost all stages of implementation steps and assessing the level of participation, university students use tools of computer gaming platform and participate in ways of planning the virtual environment which improves their education through e-Learning. The virtual 3D environment is made with different imaging methods (helium-filled balloon, Structure for motion, 3D repository models) and a developmental plan has been designed for use in many future applications. Digital tools were used with 3D reconstructed buildings from the museum archive to Unity 3D for the design. The pilot study of Information Technology work has been employed to introduce cultural heritage and archaeology to university syllabuses. It included students with a questionnaire which has been evaluated accordingly. As a result, the university students were inspired to immerse themselves into the virtual lab, aiming to increasing the level of interaction. The results show a satisfactory learning outcome by an easy to use and real 3D environment, a step forward to fill in needs of contemporary online sustainable learning demands.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anupam Bhattacharya ◽  
Simang Champramary ◽  
Tanya Tripathi ◽  
Debajit Thakur ◽  
Ilya Ioshikhes ◽  
...  

Abstract Background Our understanding of genome regulation is ever-evolving with the continuous discovery of new modes of gene regulation, and transcriptomic studies of mammalian genomes have revealed the presence of a considerable population of non-coding RNA molecules among the transcripts expressed. One such non-coding RNA molecule is long non-coding RNA (lncRNA). However, the function of lncRNAs in gene regulation is not well understood; moreover, finding conserved lncRNA across species is a challenging task. Therefore, we propose a novel approach to identify conserved lncRNAs and functionally annotate these molecules. Results In this study, we exploited existing myogenic transcriptome data and identified conserved lncRNAs in mice and humans. We identified the lncRNAs expressing differentially between the early and later stages of muscle development. Differential expression of these lncRNAs was confirmed experimentally in cultured mouse muscle C2C12 cells. We utilized the three-dimensional architecture of the genome and identified topologically associated domains for these lncRNAs. Additionally, we correlated the expression of genes in domains for functional annotation of these trans-lncRNAs in myogenesis. Using this approach, we identified conserved lncRNAs in myogenesis and functionally annotated them. Conclusions With this novel approach, we identified the conserved lncRNAs in myogenesis in humans and mice and functionally annotated them. The method identified a large number of lncRNAs are involved in myogenesis. Further studies are required to investigate the reason for the conservation of the lncRNAs in human and mouse while their sequences are dissimilar. Our approach can be used to identify novel lncRNAs conserved in different species and functionally annotated them.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Robert J. Francis ◽  
Gillian Robb ◽  
Lee McCann ◽  
Bhagwati Khatri ◽  
James Keeble ◽  
...  

AbstractTuberculosis (TB) preclinical testing relies on in vivo models including the mouse aerosol challenge model. The only method of determining colony morphometrics of TB infection in a tissue in situ is two-dimensional (2D) histopathology. 2D measurements consider heterogeneity within a single observable section but not above and below, which could contain critical information. Here we describe a novel approach, using optical clearing and a novel staining procedure with confocal microscopy and mesoscopy, for three-dimensional (3D) measurement of TB infection within lesions at sub-cellular resolution over a large field of view. We show TB morphometrics can be determined within lesion pathology, and differences in infection with different strains of Mycobacterium tuberculosis. Mesoscopy combined with the novel CUBIC Acid-Fast (CAF) staining procedure enables a quantitative approach to measure TB infection and allows 3D analysis of infection, providing a framework which could be used in the analysis of TB infection in situ.


Sign in / Sign up

Export Citation Format

Share Document