scholarly journals Valorizing Waste Lignocellulose-Based Furniture Boards by Phosphoric Acid and Hydrogen Peroxide (Php) Pretreatment for Bioethanol Production and High-Value Lignin Recovery

2019 ◽  
Vol 11 (21) ◽  
pp. 6175
Author(s):  
Jingwen Zhao ◽  
Dong Tian ◽  
Fei Shen ◽  
Jinguang Hu ◽  
Yongmei Zeng ◽  
...  

Three typical waste furniture boards (fiberboard, chipboard, and blockboard) were pretreated with phosphoric acid and hydrogen peroxide (PHP). The fractionation process of these feedstocks was attempted in order to harvest the cellulose-rich fraction for enzymatic hydrolysis and bioethanol conversion; further, lignin recovery was also considered in this process. The results indicated that 78.9–91.2% of the cellulose was recovered in the cellulose-rich fraction. The decreased crystallinity, which promoted the water retention capacity and enzyme accessibility, contributed greatly to the excellent hydrolysis performance of the cellulose-rich fraction. Therefore, rather high cellulose–glucose conversions of 83.3–98.0% were achieved by hydrolyzing the pretreated furniture boards, which allowed for harvesting 208–241 g of glucose from 1.0 kg of feedstocks. Correspondingly, 8.1–10.4 g/L of ethanol were obtained after 120 h of simultaneous saccharification and fermentation. The harvested lignin exhibited abundant carboxyl –OH groups (0.61–0.67 mmol g−1). In addition, approximately 15–26 g of harvested oligosaccharides were integrated during PHP pretreatment. It was shown that PHP pretreatment is feasible for these highly recalcitrant biomass board materials, which can diversify the bioproducts used in the integrated biorefinery concept.

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1510
Author(s):  
María Ángeles Rivas ◽  
Rocío Casquete ◽  
María de Guía Córdoba ◽  
Santiago Ruíz-Moyano ◽  
María José Benito ◽  
...  

The objective of this study was to evaluate, from a technological and nutritional point of view, the chemical composition and functional properties of the industrial winemaking by-products, namely skins, stems and lees. The chemical and physical characteristics, as well as the functional properties (fat and water retention and swelling capacity, antioxidant capacity, and their prebiotic effect), of the dietary fibre of these by-products were studied. The results showed that the skins, stems, and lees are rich in fibre, with the stem fibre containing the highest amounts of non-extractable polyphenols attached to polysaccharides with high antioxidant activity and prebiotic effect. Lee fibre had the highest water retention capacity and oil retention capacity. The results reveal that winemaking by-products could be used as a source of dietary fibre with functional characteristics for food applications.


2005 ◽  
Vol 21 (6) ◽  
pp. 651-660 ◽  
Author(s):  
Klaus Mehltreter ◽  
Alejandro Flores-Palacios ◽  
José G. García-Franco

The diversity, abundance and frequency of vascular epiphytes on the lower trunk were compared between two host groups of a Mexican cloud forest: angiosperm trees (n = 72) and tree ferns (n = 28). The bark of the five most frequent host trees and the root mantle of the two tree ferns were analysed for their thickness, water content, water retention capacity and pH. A total of 55 epiphyte species and 910 individuals were found on the 27 host species. On hosts with a dbh range of 5–10 cm, epiphytes were significantly more diverse (4.3±0.9 species per host) and more abundant (12.5±2.2 individuals per host) on tree ferns than on angiosperm trees (1.9±0.2 species per host and 3.9±0.6 individuals per host). However, these differences were not significant for the dbh class of 10–20 cm, because epiphyte numbers increased on angiosperm trees with larger host size, but not in tree ferns. Most epiphyte species had no preference for any host group, but four species were significantly more frequent on tree ferns and two species on angiosperm trees. The higher epiphyte diversity and abundance on tree fern trunks of the smallest dbh class is attributed to their presumably greater age and to two stem characteristics, which differed significantly between host groups, the thicker root mantle and higher water retention capacity of tree ferns. These bark characteristics may favour germination and establishment of epiphytes.


Author(s):  
Sandoval-Gallegos Eli Mireya ◽  
Arias-Rico José ◽  
Cruz-Cansino Nelly del Socorro ◽  
Ramírez-Ojeda Deyanira ◽  
Zafra-Rojas Quinatzin Yadira ◽  
...  

The aim of the present research was to determine the effect of boiling on nutritional composition, total phenolic compounds, antioxidant capacity, physicochemical and morphological characteristics of two edible plants Malva parviflora (mallow leaf) and Myrtillocactus geometrizans (garambullo flower). The plants had an important nutritional composition as carbohydrates (48-70 %), dietary fiber (36-42 %) and protein (13 %), as well as total phenolic compounds (468-750 mg GAE/100 g db) with a high antioxidant capacity. However, boiling originated the decrease of soluble compounds, carbohydrates, total phenolic compounds, antioxidant capacity and physicochemical properties. Plants changed to dark colors and physicochemical properties were affected, except to water retention capacity, oil retention capacity and viscosity, which had the same values in mallow leaves (raw and boiled), but increased water retention capacity in garambullo flowers, it may be by changes in the morphology observed. Therefore, is to suggest the raw consumption or with minimal cooking of these plants to avoid changes caused by thermal treatment.


Author(s):  
Kun Sha ◽  
Ping Qian ◽  
Li-Jun Wang ◽  
Zhan-hui Lu ◽  
Li-Te Li

In this study, quality of Man-tou, the Chinese traditional steamed bread during storage was studied. Values for water retention capacity, total water solubles, soluble starch, and soluble amylose and amylopectin of Man-tou decreased with storage time. Results showed that hardness, chewiness and gumminess of Man-tou increased, while, springiness cohesiveness and resilience decreased along with prolonged storage time (p<0.05). Sensory evaluation results showed that all sensory rating of Man-tou, including softness, stickiness, cohesiveness, elasticity, taste and total score, dropped drastically within 24 h of storage time (p<0.05). Differential Scanning Calorimeter (DSC) was used to determine crystalline structure of amylopectin in Man-tou, and the value for enthalpy of crystallization was found increased with storage time. Amylopectin crystallization was significantly associated to Man-tou firming (p<0.01).


2017 ◽  
Vol 47 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Marília Barcelos Souza Lopes ◽  
Taynar Coelho de Oliveira Tavares ◽  
Danilo Alves Veloso ◽  
Niléia Cristina da Silva ◽  
Rodrigo Ribeiro Fidelis

ABSTRACT The population increase and the need of intensifying food production, coupled with the scarcity of water resources, have led to the search of alternatives that reduce consumption and optimize the water use during cultivation. In this context, hydrogels become a strategy in agricultural management, due to their water retention capacity in the soil and availability to plants. This study aimed at evaluating the efficiency of hydrogels on the development and production of cowpea bean ('Sempre-verde' cultivar) under water stress, in a greenhouse. The experiment was performed in a randomized block design, with five replications, in a 4 x 5 factorial scheme, consisting of four types of hydrogel (Hydroplan-EB HyA, with granulometry of 1-3 mm; Hydroplan-EB HyB, with granulometry of 0.5-1 mm; Hydroplan-EB HyC, with granulometry < 0.5 mm; Polim-Agri, with granulometry of 1-0.5 mm) and five concentrations (0 g pot-1; 1.5 g pot-1; 3 g pot-1; 4.5 g pot-1; 6 g pot-1). The following traits were evaluated: number of pods per plant, number of grains per pod and grain yield. The highest concentration (6 g pot-1) resulted in a higher number of pods and yield for all the hydrogels, especially for HyC and Polim-Agro, which presented 7.4 pods plant-1 and 7.0 pods plant-1, with yield of 15.43 g plant-1 and 16.68 g plant-1, respectively. The use of hydrogel shows to be efficient for reducing yield losses under water stress.


Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

Allophanic soils are dark-colored young soils derived mainly from volcanic ash. These soils typically have a low bulk density (< 0.9 Mg/m3), a high water retention capacity (100% by weight at field capacity), and contain predominantly allophanes, imogolite, halloysite, and amorphous Al silicates in the clay fraction. These soils are found in small, restricted areas with volcanic activity. Worldwide, there are about 120 million ha of allophanic soils, which is about 1% of the Earth's ice-free land surface. In tropical regions, allophanic soils are among the most productive and intensively used agricultural soils. They occur in the Philippines, Indonesia, Papua New Guinea, the Caribbean and South Pacific islands, East Africa, Central America, and the Andean rim of South America. Allophanic soils are primarily Andisols and andic Inceptisols, Entisols, Mollisols, and Alfisols according to the Soil Taxonomy classification. Allophanic soils generally have a dark-colored surface soil, slippery or greasy consistency, a predominantly crumb and granular structure, and a low bulk density ranging from 0.3 to 0.8 Mg/m3. Although allophanic soils are apparently well-drained, they still have a very high water content many days after rain. When the soil is pressed between fingers, it gives a plastic, greasy, but non-sticky sensation of a silty or loamy texture. When dry, the soil loses its greasiness and becomes friable and powdery. The low bulk density of allophanic soils is closely related to the high soil porosity. For example, moderately weathered allophanic soils typically have a total porosity of 78%, with macro-, meso-, and micropores occupying 13%, 33%, and 32%, respectively. Water retained in the mesopores is readily available for plant uptake. Water retained in the micropores is held strongly by soil particles and is not readily available for plant use. The macropores provide soil aeration and facilitate water infiltration. The high water retention capacity is also associated with the high soil porosity. In allophanic soils formed under a humid climate, especially those containing large amounts of allophane, the moisture content at field capacity can be as high as 300%, calculated on a weight basis. Such extremely high values of water content seem misleading.


Sign in / Sign up

Export Citation Format

Share Document