scholarly journals Effect of pH on Rheological and Filtration Properties of Water-Based Drilling Fluid Based on Bentonite

2019 ◽  
Vol 11 (23) ◽  
pp. 6714 ◽  
Author(s):  
Hany Gamal ◽  
Salaheldin Elkatatny ◽  
Salem Basfar ◽  
Abdulaziz Al-Majed

The design of drilling fluids is very important for the drilling operation success. The rheological properties play a key role in the performance of the drilling fluid. Therefore, studying the mud rheological properties of the water-based drilling fluid based on bentonite is essential. The main objectives of this study are to address the effect of pH changes on the rheological and filtration properties of the water-based drilling fluid based on bentonite and to provide a recommended pH range for this drilling fluid for a safe and high-performance drilling operation. Different samples of the water-based drilling fluid based on bentonite with different pH values were prepared, and the rheological properties such as plastic viscosity, yield point, and gel strength were measured. After that, the filtration test was performed under 300 psi differential pressure and 200 °F. The pH for the water-based drilling fluid based on bentonite significantly affects the mud rheology. The shear stress and shear rate relation were varying with the change in the pH. Increasing the pH from 8 to 12 resulted in decreasing the plastic viscosity by 53% and the yield point by 82%, respectively. The ratio of yield point / plastic viscosity was 1.4 for pH of 8 while it decreased to 0.5 for a pH of 11 and 12. There was a significant decrease in the gel strength readings by increasing the pH. The filtrate volume and filter cake thickness increased by increasing pH. The filtration volume increased from 9.5 cm3 to 12.6 cm3 by increasing the pH from 9 to 12. The filter cake thickness was 2 mm at 9 pH, while it was increased to 3.6 mm for 12 pH. It is recommended from the results to keep the pH of water-based drilling fluid based on bentonite in the range of 9 to 10 as it provides the optimum mud rheological and filtration properties. The findings of this study illustrated that keeping the pH in the range of 9 to 10 will reduce the plastic viscosity that will help in increasing the rate of penetration and reducing the required pump pressure to circulate the mud to the surface which will help to sustain the drilling operation. In addition, reducing the filtrate volume will produce a thin filter cake which will help in avoiding the pipe sticking and protect the environment. In general, optimizing the pH of the water-based drilling fluid based on bentonite in the range of 9 to 10 will improve the drilling operation and minimize the total cost.

2017 ◽  
Vol 11 (1) ◽  
pp. 274-284
Author(s):  
Kaffayatullah Khan ◽  
Shaukat Ali Khan ◽  
Muhammad Umair Saleem ◽  
Muhammad Ashraf

Background: Bentonite clays are widely used in a drilling operation and play a vital role as a drilling fluid. Bentonite clay mud performs several functions during the drilling operation and facilitates the drilling process. Objective: In this study, the locally available raw bentonite clays were investigated to evaluate its potential use as a mud for borehole drilling operation after its improvement with the additives. Method: Rheological properties such as plastic viscosity, yield point and gel strength were evaluated by using a viscometer and filtrate loss test was performed by using filter press on both locally available raw bentonite clays and the commercial bentonite named as Mill gel. Results: From the test results obtained for the up gradation of clays with the different beneficiating materials, the drastic increase in the plastic viscosity, yield point and gel strength has been observed. It shows that Xanthum gum produced better results for the improvement of rheological properties of such clays. Carboxymethyl cellulose and starch were used as additives and it has been observed that carboxymethyl cellulose has improved both viscosity and filtrate loss control, whereas starch muds have the best filtration control properties. Conclusion: Improved bentonite clays have rheological and filtration characteristics that have satisfied American Petroleum Institute specification at optimum conditions of clay. It was concluded that improved clays are the suitable material for the drilling operations and suitable to substitute commercial bentonite.


Author(s):  
Tariq Ahmed ◽  
Nura Makwashi

The selection and control of a suitable drilling fluid is necessary to successfully drill an oil and gas well. The rheological properties of drilling fluids vary with changes in conditions such as time and temperature. Slight changes in these conditions can cause unpredictable and significant changes in the mud’s properties. This makes it necessary to study the rheology of drilling fluids and how it is affected by these changes. At the rig sites, tests are carried out by the mud engineers to ensure that the properties of the drilling fluids are within the required limits. Similar tests were carried out at the laboratory in this work to determine the plastic viscosity, yield point, gel strength of mud samples at different conditions of ageing time, temperature and concentration of Xanthan gum (X.G) used as an additive. The Experiments carried out were grouped into three. The first was done with the aim to further explain how the Bentonite and Sepiolite water-based drilling fluids behaves after been aged for certain period. The second sets of experiments were conducted to investigate how the rheological properties of water-based Bentonite muds are affected by different concentration of xanthan gum added as an additive to improve the muds properties and the last sets of experiments were done to investigate the ageing effect on Bentonite mud treated with 250mg/L xanthan gum. Effects of temperature were also considered in these experiments with a 10℃ variation in the first group and 20℃ in the other two groups between readings from 20℃ to 60℃ . Results obtained indicated that Sepiolite water-based drilling fluid offers better plastic viscosity and yield point as compared to Bentonite water-based drilling fluids. It was also found that the viscosity and yield point of Sepiolite, Bentonite and treated Bentonite muds decreases with increase ageing time and temperature while the gel strength increases with ageing time but similarly decreases with increase in temperature. In the second group, results obtained indicated that plastic viscosity, yield point and gel strength increases as concentration of xanthan gum increases, all of which decreases with increase in temperature.


2020 ◽  
Vol 10 (8) ◽  
pp. 3389-3397 ◽  
Author(s):  
Nayem Ahmed ◽  
Md. Saiful Alam ◽  
M. A. Salam

Abstract Loss of drilling fluid commonly known as mud loss is considered as one of the critical issues during the drilling operation as it can cause severe formation damage. To minimize fluid loss, researchers introduced numerous additives but did not get the expected result. Recently, the use of nanoparticles (NPs) in drilling fluid gives a new hope to control the fluid loss. A basic KCl–Glycol–PHPA polymer-based mud is made, and six different concentrations of 0.1, 0.5, 1.0, 1.5, 2.0, 3.0 wt% iron (III) oxide or Hematite (Fe2O3) NPs are mixed with the basic mud. The experimental observations reveal that fluid loss of basic mud is 5.9 ml after 30 min and prepared nano-based drilling mud results in a less fluid loss at all concentrations. Nanoparticles with a concentration of 0.5 wt% result in a 5.1 ml fluid loss at the API LTLP filter press test. On the other hand, nanoparticles with a concentration of 3.0 wt% enhance the plastic viscosity, yield point, and 10 s gel strength by 15.0, 3.0, and 12.5%, respectively. The optimum concentration of hematite NPs is found to be 0.5 wt% which reduces the API LPLT filtrate volume and filter cake thickness by 13.6 and 40%, respectively, as well as an improvement of plastic viscosity by 10%.


2018 ◽  
Vol 24 (12) ◽  
pp. 12-25 ◽  
Author(s):  
Amel Habeeb Assi ◽  
Ramzi Riyadh Khazeem ◽  
Ahmed Salah Salem ◽  
Alaa Tahseen Ali

This research is focusing on finding more effective polymers that leads to enhance the rheological properties of Water Base Muds. The experiments are done for different types of mud for all substances which are Polyacrylamide, Xanthan gum, CMC (Carboxyl Methyl Cellulose). This study shows the effect of add polymer to red bentonite mud, effect of add polymer to Iraqi bentonite mud, the effect of add bentonite to polymer mud. The mud properties of Iraqi bentonite blank are enhanced after adding the polymers to the blank mix, CMC gives the highest value of plastic viscosity and Gel strength than others; X-anthan gives the highest value of yield point and gel strength than others. For the red bentonite mud, Polyacrylamide has the highest shear stress and yield point than the others polymers, but Xanthan has the highest effect on plastic viscosity than other polymers. All polymers reduce filtration loss. The polymer solution mud failed to suspend the barite so we cannot use it as drilling fluid even so this mud has good Rheological properties (PV and YP). The maximum amount of each polymer is founded for the studied clay types.                                                             


2016 ◽  
Vol 864 ◽  
pp. 189-193 ◽  
Author(s):  
Abdul Razak Ismail ◽  
Wan Rosli Wan Sulaiman ◽  
Mohd Zaidi Jaafar ◽  
Issham Ismail ◽  
Elisabet Sabu Hera

Nanoparticles are used to study the rheological characteristics of drilling fluids. Nanoparticles have high surface to volume ratio, therefore only small quantity is required to blend in the drilling fluid. This research evaluates the performance of nanosilica and multi walled carbon nanotubes (MWCNT) as fluid loss additives in water based drilling fluid with various nanoparticles concentration and temperature. The results show that plastic viscosity, yield point and gel strength of drilling fluid increases as the concentration of nanoparticles increased. Drilling fluid with nanosilica gives the highest filtrate loss of 12 ml and mudcake thickness of 10 inch at 1 g concentration at 300°F. However, drilling fluid with MWCNT shows a decreasing trend in fluid loss and mudcake thickness. The results also show that xanthan gum containing 1 g of MWCNT gives 4.9 ml fluid loss and mudcake thickness of 4 inch at 200°F. After aging, plastic viscosity, yield point and gel strength of mud containing nanoparticles decrease significantly especially for 1 g of nanosilica and 0.01 g MWCNT. Fluid loss and mudcake thickness increased when the mud is exposed to temperature above 250°F. The results showed that xanthan gum with MWCNT gives a better rheological performance.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


2021 ◽  
Author(s):  
Farqad Hadi ◽  
Ali Noori ◽  
Hussein Hussein ◽  
Ameer Khudhair

Abstract It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works present valid and reliable results, they are expensive and time consuming. On the other hand, continuous and regular determination of the rheological mud properties can perform its essential functions during well construction. More uncertainties in planning the drilling fluid properties meant that more challenges may be exposed during drilling operations. This study presents two predictive techniques, multiple regression analysis (MRA) and artificial neural networks (ANNs), to determine the rheological properties of water-based drilling fluid based on other simple measurable properties. While mud density (MW), marsh funnel (MF), and solid% are key input parameters in this study, the output functions or models are plastic viscosity (PV), yield point (YP), apparent viscosity (AV), and gel strength. The prediction methods were demonstrated by means of a field case in eastern Iraq, using datasets from daily drilling reports of two wells in addition to the laboratory measurements. To test the performance ability of the developed models, two error-based metrics (determination coefficient R2 and root mean square error RMSE) have been used in this study. The current results of this study support the evidence that MW, MF, and solid% are consistent indexes for the prediction of rheological properties. Both mud density and solid content have a relative-significant effect on increasing PV, YP, AV, and gel strength. However, a scattering around each fit curve is observed which proved that one rheological property alone is not sufficient to estimate other properties. The results also reveal that both MRA and ANN are conservative in estimating the fluid rheological properties, but ANN is more precise than MRA. Eight empirical mathematical models with high performance capacity have been developed in this study to determine the rheological fluid properties based on simple and quick equipment as mud balance and marsh funnel. This study presents cost-effective models to determine the rheological fluid properties for future well planning in Iraqi oil fields.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2655
Author(s):  
Maqsood Ahmad ◽  
Imtiaz Ali ◽  
Muhammad Syahmi Bins Safri ◽  
Mohammad Arif Izzuddin Bin Mohammad Faiz ◽  
Asif Zamir

Several borehole problems are encountered during drilling a well due to improper mud design. These problems are directly associated with the rheological and filtration properties of the fluid used during drilling. Thus, it is important to investigate the mud rheological and filtration characteristics of water-based drilling muds (WBMs). Several materials have been examined but due to the higher temperature conditions of wells, such materials have degraded and lost their primary functions. In this research, an attempt was made to prepare a water-based mud by utilizing graphene nano platelets (GNP) in addition to the native tapioca starch at different ratios. The combined effect of starch and graphene nano platelets has been investigated in terms of mud’s rheological and filtration parameters, including its plastic viscosity (PV), yield point (YP), fluid loss volume (FLV) and filtercake thickness (FCT). The morphological changes in the filtercake have also been observed using Field Emission Scanning Electron Microscope (FESEM) micrographs. Plastic viscosity was increased from 18–35 cP, 22–31 cP and 21–28 cP for 68 °F, 250 °F and 300 °F, respectively. The yield point was also enhanced from 22–37 lb/100ft2, 26–41 lb/100ft2 and 24–31 lb/100ft2 at the studied range. The fluid loss was dramatically reduced from 14.5–6.5 mL, 17.3–7.5 mL and 36–9.5 mL at 68 °F, 250 °F and 300 °F respectively. Similarly, filtercake thickness was also reduced which was further illustrated by filtercake morphology.


2019 ◽  
Vol 8 (4) ◽  
pp. 9720-9722

Drilling fluid or mud is essential fluid in drilling operation which has many important properties and one of the important properties is the viscosity of the drilling fluid and the viscosity is further classified as yield viscosity and plastic viscosity which means different in terms of its function. This paper is attempting to show the rheological characteristics of the different samples of the drilling fluid using Xanthan Gum and Physillum husk and different weighting agents Barite and Calcium Carbonate at ambient conditions. The results showed that xanthan gum acts as good viscosifying agent as compared with physillum husk. In addition that, the water based drilling mud with barite which act as weighing agent proved better as compared with calcium carbonate. The following paper will be valuable to the graduates, future graduates and also to the Industry personnel have a basic idea about the rheology and how the parameters related to the rheology are valuable in mud design.


Cerâmica ◽  
2018 ◽  
Vol 64 (370) ◽  
pp. 254-265 ◽  
Author(s):  
B. M. A. Brito ◽  
P. M. Bastos ◽  
A. J. A. Gama ◽  
J. M. Cartaxo ◽  
G. A. Neves ◽  
...  

Abstract Over the past few years, considerable research has been conducted using the techniques of mixture delineation and statistical modeling. Through this methodology, applications in various technological fields have been found/optimized, especially in clay technology, leading to greater efficiency and reliability. This work studied the influence of carboxymethylcellulose on the rheological and filtration properties of bentonite dispersions to be applied in water-based drilling fluids using experimental planning and statistical analysis for clay mixtures. The dispersions were prepared according to Petrobras standard EP-1EP-00011-A, which deals with the testing of water-based drilling fluid viscosifiers for oil prospecting. The clay mixtures were transformed into sodic compounds, and carboxymethylcellulose additives of high and low molar mass were added, in order to improve their rheology and filtrate volume. Experimental planning and statistical analysis were used to verify the effect. The regression models were calculated for the relation between the compositions and the following rheological properties: apparent viscosity, plastic viscosity, and filtrate volume. The significance and validity of the models were confirmed. The results showed that the 3D response surfaces of the compositions with high molecular weight carboxymethylcellulose added were the ones that most contributed to the rise in apparent viscosity and plastic viscosity, and that those with low molecular weight were the ones that most helped in the reduction of the filtrate volume. Another important observation is that the experimental planning and statistical analysis can be used as an important auxiliary tool to optimize the rheological properties and filtrate volume of bentonite clay dispersions for use in drilling fluids when carboxymethylcellulose is added.


Sign in / Sign up

Export Citation Format

Share Document