scholarly journals Influence of Common Weighing Agents on Rheological Behaviour of Drilling Mud

2019 ◽  
Vol 8 (4) ◽  
pp. 9720-9722

Drilling fluid or mud is essential fluid in drilling operation which has many important properties and one of the important properties is the viscosity of the drilling fluid and the viscosity is further classified as yield viscosity and plastic viscosity which means different in terms of its function. This paper is attempting to show the rheological characteristics of the different samples of the drilling fluid using Xanthan Gum and Physillum husk and different weighting agents Barite and Calcium Carbonate at ambient conditions. The results showed that xanthan gum acts as good viscosifying agent as compared with physillum husk. In addition that, the water based drilling mud with barite which act as weighing agent proved better as compared with calcium carbonate. The following paper will be valuable to the graduates, future graduates and also to the Industry personnel have a basic idea about the rheology and how the parameters related to the rheology are valuable in mud design.

2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


2020 ◽  
Vol 10 (8) ◽  
pp. 3389-3397 ◽  
Author(s):  
Nayem Ahmed ◽  
Md. Saiful Alam ◽  
M. A. Salam

Abstract Loss of drilling fluid commonly known as mud loss is considered as one of the critical issues during the drilling operation as it can cause severe formation damage. To minimize fluid loss, researchers introduced numerous additives but did not get the expected result. Recently, the use of nanoparticles (NPs) in drilling fluid gives a new hope to control the fluid loss. A basic KCl–Glycol–PHPA polymer-based mud is made, and six different concentrations of 0.1, 0.5, 1.0, 1.5, 2.0, 3.0 wt% iron (III) oxide or Hematite (Fe2O3) NPs are mixed with the basic mud. The experimental observations reveal that fluid loss of basic mud is 5.9 ml after 30 min and prepared nano-based drilling mud results in a less fluid loss at all concentrations. Nanoparticles with a concentration of 0.5 wt% result in a 5.1 ml fluid loss at the API LTLP filter press test. On the other hand, nanoparticles with a concentration of 3.0 wt% enhance the plastic viscosity, yield point, and 10 s gel strength by 15.0, 3.0, and 12.5%, respectively. The optimum concentration of hematite NPs is found to be 0.5 wt% which reduces the API LPLT filtrate volume and filter cake thickness by 13.6 and 40%, respectively, as well as an improvement of plastic viscosity by 10%.


2014 ◽  
Vol 575 ◽  
pp. 128-133 ◽  
Author(s):  
Nur Hashimah Alias ◽  
Nuurhani Farhanah Mohd Tahir ◽  
T.A.T. Mohd ◽  
N.A. Ghazali ◽  
E. Yahya ◽  
...  

In drilling and well completion operations, drilling fluid is a crucial element as it is employed for the purposes of several functions. The main functions of drilling fluid are to control formation pressure, maintain the wellbore stability, transport the cuttings up to surface to clean the borehole bottom as well as to lubricate and cool the drill bit. Moreover, it is used to minimize the drilling damage to reservoir and suspend cuttings when the pumping is stop, hence it will not falling back down the borehole. The purpose of this study is to formulate new drilling mud formulation modified with nanosilica. Six samples of water based mud (WBM) were prepared using three types of polymers, (Xanthan Gum, Hydro Zan Plus and Hydro Star HT), starch and nanosilica. Basic rheological tests such as density, viscosity and pH were carried out. The density test was carried out using mud balance meanwhile the pH test was using pH meter. Theplasticviscosity, yield point and gel strength tests were carried out using viscometer. Besides that, physical observation was also performed for as the stability test. The results concluded that water based mud incorporated with polymer Hydro Zan Plus and nanosilica can be a potential candidate to be commercialized as a smart nanodrilling fluid.


Author(s):  
Mesfin Belayneh ◽  
Bernt S. Aadnøy

Drilling fluid plays a key role in an efficient drilling operation to minimize problems such as wellbore collapse, circulation losses and stuck pipe. Well instability problems are costly as they increase the non-productive time and the overall budget (1) (2). Well instability problems controlled by designing appropriate mud density and fluid properties that controls the well. The fracture sealing ability of a drilling fluid is one very important of the drilling mud. This paper presents design of water-based drilling fluids and results from laboratory experiments to quantify the loss circulation performance of drilling fluids. Because it is preferable to use oil-based muds in some well sections, the paper will also include a recent study on how to minimize losses when using oil based muds. Here uses of micro/nanoparticles have shown to reduce filtrate losses and to build barriers that are more efficient during circulation loss events. All the tests presented are at low temperature, which is suitable for Artic environments.


Author(s):  
Tariq Ahmed ◽  
Nura Makwashi

The selection and control of a suitable drilling fluid is necessary to successfully drill an oil and gas well. The rheological properties of drilling fluids vary with changes in conditions such as time and temperature. Slight changes in these conditions can cause unpredictable and significant changes in the mud’s properties. This makes it necessary to study the rheology of drilling fluids and how it is affected by these changes. At the rig sites, tests are carried out by the mud engineers to ensure that the properties of the drilling fluids are within the required limits. Similar tests were carried out at the laboratory in this work to determine the plastic viscosity, yield point, gel strength of mud samples at different conditions of ageing time, temperature and concentration of Xanthan gum (X.G) used as an additive. The Experiments carried out were grouped into three. The first was done with the aim to further explain how the Bentonite and Sepiolite water-based drilling fluids behaves after been aged for certain period. The second sets of experiments were conducted to investigate how the rheological properties of water-based Bentonite muds are affected by different concentration of xanthan gum added as an additive to improve the muds properties and the last sets of experiments were done to investigate the ageing effect on Bentonite mud treated with 250mg/L xanthan gum. Effects of temperature were also considered in these experiments with a 10℃ variation in the first group and 20℃ in the other two groups between readings from 20℃ to 60℃ . Results obtained indicated that Sepiolite water-based drilling fluid offers better plastic viscosity and yield point as compared to Bentonite water-based drilling fluids. It was also found that the viscosity and yield point of Sepiolite, Bentonite and treated Bentonite muds decreases with increase ageing time and temperature while the gel strength increases with ageing time but similarly decreases with increase in temperature. In the second group, results obtained indicated that plastic viscosity, yield point and gel strength increases as concentration of xanthan gum increases, all of which decreases with increase in temperature.


2020 ◽  
Vol 4 (2) ◽  
pp. 18
Author(s):  
Bayan Qadir Sofy Hussein ◽  
Khalid Mahmood Ismael Sharbazheri ◽  
Nabil Adiel Tayeb Ubaid

The rheological properties of drilling fluids have an important role in providing a stable wellbore and eliminating the borehole problems. Several materials including polymers (xanthan gum) can be used to improve these properties. In this study, the effect of the local Katira, as a new polymer, on the rheological properties of the drilling fluids prepared as the bentonite-water-based mud has been investigated in comparison with the conventional xanthan gum. Experimental work was done to study of rheological properties of several gums such as, local katira gum, and xanthan gum bentonite drilling mud. Different samples of drilling fluids are prepared adding the xanthan gum and local katira to the base drilling fluid at different concentrations using Hamilton Beach mixer. The prepared samples are passed through rheological property tests including the apparent viscosity, plastic viscosity, and yield point (YP) under different temperature conditions. The obtained results show that the viscosity is increased from 5 to 8.5 cp and YP is increased from 18.5 to 30.5 lb/100 ft2, with increasing the concentration of the xanthan gum from 0.1 to 0.4. However, the effect of the local katira in increasing the viscosity and YP is lower compared with the xanthan gum, which are ranged between 5–6 cp and 18.5–20.5 cp.


2019 ◽  
Vol 11 (23) ◽  
pp. 6714 ◽  
Author(s):  
Hany Gamal ◽  
Salaheldin Elkatatny ◽  
Salem Basfar ◽  
Abdulaziz Al-Majed

The design of drilling fluids is very important for the drilling operation success. The rheological properties play a key role in the performance of the drilling fluid. Therefore, studying the mud rheological properties of the water-based drilling fluid based on bentonite is essential. The main objectives of this study are to address the effect of pH changes on the rheological and filtration properties of the water-based drilling fluid based on bentonite and to provide a recommended pH range for this drilling fluid for a safe and high-performance drilling operation. Different samples of the water-based drilling fluid based on bentonite with different pH values were prepared, and the rheological properties such as plastic viscosity, yield point, and gel strength were measured. After that, the filtration test was performed under 300 psi differential pressure and 200 °F. The pH for the water-based drilling fluid based on bentonite significantly affects the mud rheology. The shear stress and shear rate relation were varying with the change in the pH. Increasing the pH from 8 to 12 resulted in decreasing the plastic viscosity by 53% and the yield point by 82%, respectively. The ratio of yield point / plastic viscosity was 1.4 for pH of 8 while it decreased to 0.5 for a pH of 11 and 12. There was a significant decrease in the gel strength readings by increasing the pH. The filtrate volume and filter cake thickness increased by increasing pH. The filtration volume increased from 9.5 cm3 to 12.6 cm3 by increasing the pH from 9 to 12. The filter cake thickness was 2 mm at 9 pH, while it was increased to 3.6 mm for 12 pH. It is recommended from the results to keep the pH of water-based drilling fluid based on bentonite in the range of 9 to 10 as it provides the optimum mud rheological and filtration properties. The findings of this study illustrated that keeping the pH in the range of 9 to 10 will reduce the plastic viscosity that will help in increasing the rate of penetration and reducing the required pump pressure to circulate the mud to the surface which will help to sustain the drilling operation. In addition, reducing the filtrate volume will produce a thin filter cake which will help in avoiding the pipe sticking and protect the environment. In general, optimizing the pH of the water-based drilling fluid based on bentonite in the range of 9 to 10 will improve the drilling operation and minimize the total cost.


2016 ◽  
Vol 864 ◽  
pp. 189-193 ◽  
Author(s):  
Abdul Razak Ismail ◽  
Wan Rosli Wan Sulaiman ◽  
Mohd Zaidi Jaafar ◽  
Issham Ismail ◽  
Elisabet Sabu Hera

Nanoparticles are used to study the rheological characteristics of drilling fluids. Nanoparticles have high surface to volume ratio, therefore only small quantity is required to blend in the drilling fluid. This research evaluates the performance of nanosilica and multi walled carbon nanotubes (MWCNT) as fluid loss additives in water based drilling fluid with various nanoparticles concentration and temperature. The results show that plastic viscosity, yield point and gel strength of drilling fluid increases as the concentration of nanoparticles increased. Drilling fluid with nanosilica gives the highest filtrate loss of 12 ml and mudcake thickness of 10 inch at 1 g concentration at 300°F. However, drilling fluid with MWCNT shows a decreasing trend in fluid loss and mudcake thickness. The results also show that xanthan gum containing 1 g of MWCNT gives 4.9 ml fluid loss and mudcake thickness of 4 inch at 200°F. After aging, plastic viscosity, yield point and gel strength of mud containing nanoparticles decrease significantly especially for 1 g of nanosilica and 0.01 g MWCNT. Fluid loss and mudcake thickness increased when the mud is exposed to temperature above 250°F. The results showed that xanthan gum with MWCNT gives a better rheological performance.


2020 ◽  
pp. 70-74
Author(s):  
V.V. Guliyev ◽  
◽  
◽  

Currently, a great number of drilling fluids with different additives are used all over the world. Such additives are applied to control the properties of the drilling mud. The main purpose for controlling is to achieve more effective and safe drilling process. This research work aims to develop Water-Based Mud (WBM) with a Coefficient of Friction (CoF) as low as Oil-Based Mud (OBM) and better rheological properties. As it is known, produced CoF by WBM is higher than OBM, which means high friction between wellbore or casing and drill string. It was the reason for studying the effect of nanosilica on drilling fluid properties such as lubricity, rheological parameters and filtrate loss volume of drilling mud. The procedures were carried out following API RP 13B and API 13I standards. Five concentrations of nanosilica were selected to be tested. According to the results obtained, it was defined that adding nanosilica into the mud decreases CoF of basic WBM by 26 % and justifies nanosilica as a good lubricating agent for drilling fluid. The decreasing trend in coefficient of friction and plastic viscosity for nanosilica was obtained until the concentration of 0.1 %. This reduction is due to the shear thinning or pseudoplastic fluid behavior. After 0.1 %, an increase at PV value trend indicates that it does not follow shear thinning behavior and after reaching a certain amount of dissolved solids in the mud, it acts like normal drilling fluid. The yield point of the mud containing nanoparticles was higher than the basic one. Moreover, a growth in the concentration leads to an increase in yield point value. The improvement of this fluid system cleaning capacity via hydraulics modification and wellhole stability by filter cake endurance increase by adding nanosilica is shown as well. The average well construction data of “Neft Dashlary” field was used for the simulation studies conducted for the investigation of hydraulics parameters of reviewed fluids for all series of experiments. The test results were accepted reliable in case of at least 3 times repeatability.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
David Ekuma ◽  
Ikechukwu Okafor ◽  
Innocent Nweze

Abstract Drilling fluid are complex fluids consisting of several additives. These additives are added to enhance and control the rheological properties (such as viscosity, gel strength and yield point) of the mud. These properties are controlled for effective drilling of a well. This research work is focused on determining the rheological behavior of drilling mud using industry-based polymer and Irvingia Gabonensis (ogbono) as viscosifiers. Water based muds were formulated from the aforementioned locally sourced viscosifier and that of the conventional used viscosifier (Carboxylmetyl cellulose, CMC). Laboratory tests were carried out on the different muds formulated and their rheological properties (such as yield stress, shear stress, plastic viscosity and shear rate) are evaluated. The concentration of the viscosifiers were varied. The expected outcome of the research work aims at lowering the total drilling cost by reducing the importation of foreign polymer which promotes the development of local content in the oil and gas industry. The research compares the rheology of mud samples and the effect of varying the concentration (2g, 4g, 6g, 8g, and 10g) of both CMC and Ogbono and determining the changes in their rheological properties. The total volume of each mud sample is equivalent to 350ml which represent one barrel (42gal) in the lab. From the result, at concentration of 2g, the ogbono mud has a better rheology than the CMC mud, but at a concentration above 2g, CMC mud shows a better rheology than ogbono mud, that is, as the concentration of CMC is increased, the rheological properties of the mud increased while as the concentration of ogbono is increased the rheological properties decreased. The viscosity of the drilling fluid produced from the ogbono were lower than that of CMC, it could be used together with another local product such as cassava starch, offor or to further improve the rheology and then be a substitute to the conventional viscosifiers.


Sign in / Sign up

Export Citation Format

Share Document