scholarly journals A Hybrid Intelligence Approach to Enhance the Prediction Accuracy of Local Scour Depth at Complex Bridge Piers

2020 ◽  
Vol 12 (3) ◽  
pp. 1063 ◽  
Author(s):  
Dieu Tien Bui ◽  
Ataollah Shirzadi ◽  
Ata Amini ◽  
Himan Shahabi ◽  
Nadhir Al-Ansari ◽  
...  

Local scour depth at complex piers (LSCP) cause expensive costs when constructing bridges. In this study, a hybrid artificial intelligence approach of random subspace (RS) meta classifier, based on the reduced error pruning tree (REPTree) base classifier, namely RS-REPTree, was proposed to predict the LSCP. A total of 122 laboratory datasets were used and portioned into training (70%: 85 cases) and validation (30%: 37 cases) datasets for modeling and validation processes, respectively. The statistical metrics such as mean absolute error (MAE), root mean squared error (RMSE), correlation coefficient (R), and Taylor diagram were used to check the goodness-of-fit and performance of the proposed model. The capability of this model was assessed and compared with four state-of-the-art soft-computing benchmark algorithms, including artificial neural network (ANN), support vector machine (SVM), M5P, and REPTree, along with two empirical models, including the Florida Department of Transportation (FDOT) and Hydraulic Engineering Circular No. 18 (HEC-18). The findings showed that machine learning algorithms had the highest goodness-of-fit and prediction accuracy (0.885 < R < 0.945) in comparison to the other models. The results of sensitivity analysis by the proposed model indicated that pile cap location (Y) was a more sensitive factor for LSCP among other factors. The result also depicted that the RS-REPTree ensemble model (R = 0.945) could well enhance the prediction power of the REPTree base classifier (R = 0.885). Therefore, the proposed model can be useful as a promising technique to predict the LSCP.

2020 ◽  
Vol 23 (4) ◽  
pp. 274-284 ◽  
Author(s):  
Jingang Che ◽  
Lei Chen ◽  
Zi-Han Guo ◽  
Shuaiqun Wang ◽  
Aorigele

Background: Identification of drug-target interaction is essential in drug discovery. It is beneficial to predict unexpected therapeutic or adverse side effects of drugs. To date, several computational methods have been proposed to predict drug-target interactions because they are prompt and low-cost compared with traditional wet experiments. Methods: In this study, we investigated this problem in a different way. According to KEGG, drugs were classified into several groups based on their target proteins. A multi-label classification model was presented to assign drugs into correct target groups. To make full use of the known drug properties, five networks were constructed, each of which represented drug associations in one property. A powerful network embedding method, Mashup, was adopted to extract drug features from above-mentioned networks, based on which several machine learning algorithms, including RAndom k-labELsets (RAKEL) algorithm, Label Powerset (LP) algorithm and Support Vector Machine (SVM), were used to build the classification model. Results and Conclusion: Tenfold cross-validation yielded the accuracy of 0.839, exact match of 0.816 and hamming loss of 0.037, indicating good performance of the model. The contribution of each network was also analyzed. Furthermore, the network model with multiple networks was found to be superior to the one with a single network and classic model, indicating the superiority of the proposed model.


Author(s):  
Anik Das ◽  
Mohamed M. Ahmed

Accurate lane-change prediction information in real time is essential to safely operate Autonomous Vehicles (AVs) on the roadways, especially at the early stage of AVs deployment, where there will be an interaction between AVs and human-driven vehicles. This study proposed reliable lane-change prediction models considering features from vehicle kinematics, machine vision, driver, and roadway geometric characteristics using the trajectory-level SHRP2 Naturalistic Driving Study and Roadway Information Database. Several machine learning algorithms were trained, validated, tested, and comparatively analyzed including, Classification And Regression Trees (CART), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), Support Vector Machine (SVM), K Nearest Neighbor (KNN), and Naïve Bayes (NB) based on six different sets of features. In each feature set, relevant features were extracted through a wrapper-based algorithm named Boruta. The results showed that the XGBoost model outperformed all other models in relation to its highest overall prediction accuracy (97%) and F1-score (95.5%) considering all features. However, the highest overall prediction accuracy of 97.3% and F1-score of 95.9% were observed in the XGBoost model based on vehicle kinematics features. Moreover, it was found that XGBoost was the only model that achieved a reliable and balanced prediction performance across all six feature sets. Furthermore, a simplified XGBoost model was developed for each feature set considering the practical implementation of the model. The proposed prediction model could help in trajectory planning for AVs and could be used to develop more reliable advanced driver assistance systems (ADAS) in a cooperative connected and automated vehicle environment.


2018 ◽  
Vol 11 (1) ◽  
pp. 64 ◽  
Author(s):  
Kyoung-jae Kim ◽  
Kichun Lee ◽  
Hyunchul Ahn

Measuring and managing the financial sustainability of the borrowers is crucial to financial institutions for their risk management. As a result, building an effective corporate financial distress prediction model has been an important research topic for a long time. Recently, researchers are exerting themselves to improve the accuracy of financial distress prediction models by applying various business analytics approaches including statistical and artificial intelligence methods. Among them, support vector machines (SVMs) are becoming popular. SVMs require only small training samples and have little possibility of overfitting if model parameters are properly tuned. Nonetheless, SVMs generally show high prediction accuracy since it can deal with complex nonlinear patterns. Despite of these advantages, SVMs are often criticized because their architectural factors are determined by heuristics, such as the parameters of a kernel function and the subsets of appropriate features and instances. In this study, we propose globally optimized SVMs, denoted by GOSVM, a novel hybrid SVM model designed to optimize feature selection, instance selection, and kernel parameters altogether. This study introduces genetic algorithm (GA) in order to simultaneously optimize multiple heterogeneous design factors of SVMs. Our study applies the proposed model to the real-world case for predicting financial distress. Experiments show that the proposed model significantly improves the prediction accuracy of conventional SVMs.


Author(s):  
Bowen Gao ◽  
Dongxiu Ou ◽  
Decun Dong ◽  
Yusen Wu

Accurate prediction of train delay recovery is critical for railway incident management and providing passengers with accurate journey time. In this paper, a two-stage prediction model is proposed to predict the recovery time of train primary-delay based on the real records from High-Speed Railway (HSR). In Stage 1, two models are built to study the influence of feature space and model framework on the prediction accuracy of buffer time in each section or station. It is found that explicitly inputting the attribute features of stations and sections to the model, instead of implicit simulation, will improve the prediction accuracy effectively. For validation purpose, the proposed model has been compared with several alternative models, namely, Logistic Regression (LR), Artificial Neutral Network (ANN), Support Vector Machine (SVM) and Gradient Boosting Tree (GBT). The results show that its remarkable performance is better than other schemes. Specifically, when the error is extended to 3[Formula: see text]min, the proposed model can achieve up to the accuracy of 94.63%. It proves that our method has high value in practical engineering application. Considering the delay propagation of trains is a complex process, our future study will focus on building delay propagation knowledge base and dispatcher experience knowledge base.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3777 ◽  
Author(s):  
Ataollah Shirzadi ◽  
Karim Soliamani ◽  
Mahmood Habibnejhad ◽  
Ataollah Kavian ◽  
Kamran Chapi ◽  
...  

The main objective of this research was to introduce a novel machine learning algorithm of alternating decision tree (ADTree) based on the multiboost (MB), bagging (BA), rotation forest (RF) and random subspace (RS) ensemble algorithms under two scenarios of different sample sizes and raster resolutions for spatial prediction of shallow landslides around Bijar City, Kurdistan Province, Iran. The evaluation of modeling process was checked by some statistical measures and area under the receiver operating characteristic curve (AUROC). Results show that, for combination of sample sizes of 60%/40% and 70%/30% with a raster resolution of 10 m, the RS model, while, for 80%/20% and 90%/10% with a raster resolution of 20 m, the MB model obtained a high goodness-of-fit and prediction accuracy. The RS-ADTree and MB-ADTree ensemble models outperformed the ADTree model in two scenarios. Overall, MB-ADTree in sample size of 80%/20% with a resolution of 20 m (area under the curve (AUC) = 0.942) and sample size of 60%/40% with a resolution of 10 m (AUC = 0.845) had the highest and lowest prediction accuracy, respectively. The findings confirm that the newly proposed models are very promising alternative tools to assist planners and decision makers in the task of managing landslide prone areas.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yong Yang ◽  
Shuaishuai Zheng ◽  
Zhilu Ai ◽  
Mohammad Mahdi Molla Jafari

This study is aimed at modeling biodigestion systems as a function of the most influencing parameters to generate two robust algorithms on the basis of the machine learning algorithms, including adaptive network-based fuzzy inference system (ANFIS) and least square support vector machine (LSSVM). The models are assessed utilizing multiple statistical analyses for the actual values and model outcomes. Results from the suggested models indicate their great capability of predicting biogas production from vegetable food, fruits, and wastes for a variety of ranges of input parameters. The values that are calculated for the mean relative error (MRE %) and mean squared error (MSE) were 29.318 and 0.0039 for ANFIS, and 2.951 and 0.0001 for LSSVM which shows that the latter model has a better ability to predict the target data. Finally, in order to have additional certainty, two analyses of outlier identification and sensitivity were performed on the input parameter data that proved the proposed model in this paper has higher reliability in assessing output values compared with the previous model.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Arvin Hansrajh ◽  
Timothy T. Adeliyi ◽  
Jeanette Wing

The exponential growth in fake news and its inherent threat to democracy, public trust, and justice has escalated the necessity for fake news detection and mitigation. Detecting fake news is a complex challenge as it is intentionally written to mislead and hoodwink. Humans are not good at identifying fake news. The detection of fake news by humans is reported to be at a rate of 54% and an additional 4% is reported in the literature as being speculative. The significance of fighting fake news is exemplified during the present pandemic. Consequently, social networks are ramping up the usage of detection tools and educating the public in recognising fake news. In the literature, it was observed that several machine learning algorithms have been applied to the detection of fake news with limited and mixed success. However, several advanced machine learning models are not being applied, although recent studies are demonstrating the efficacy of the ensemble machine learning approach; hence, the purpose of this study is to assist in the automated detection of fake news. An ensemble approach is adopted to help resolve the identified gap. This study proposed a blended machine learning ensemble model developed from logistic regression, support vector machine, linear discriminant analysis, stochastic gradient descent, and ridge regression, which is then used on a publicly available dataset to predict if a news report is true or not. The proposed model will be appraised with the popular classical machine learning models, while performance metrics such as AUC, ROC, recall, accuracy, precision, and f1-score will be used to measure the performance of the proposed model. Results presented showed that the proposed model outperformed other popular classical machine learning models.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 728 ◽  
Author(s):  
Lijuan Yan ◽  
Yanshen Liu

Student performance prediction has become a hot research topic. Most of the existing prediction models are built by a machine learning method. They are interested in prediction accuracy but pay less attention to interpretability. We propose a stacking ensemble model to predict and analyze student performance in academic competition. In this model, student performance is classified into two symmetrical categorical classes. To improve accuracy, three machine learning algorithms, including support vector machine (SVM), random forest, and AdaBoost are established in the first level and then integrated by logistic regression via stacking. A feature importance analysis was applied to identify important variables. The experimental data were collected from four academic years in Hankou University. According to comparative studies on five evaluation metrics (precision, recall, F1, error, and area   under   the   receiver   operating   characteristic   curve ( AUC ) in this analysis, the proposed model generally performs better than compared models. The important variables identified from the analysis are interpretable, they can be used as guidance to select potential students.


2020 ◽  
Vol 12 (23) ◽  
pp. 3976
Author(s):  
Nicholas Fiorentini ◽  
Mehdi Maboudi ◽  
Pietro Leandri ◽  
Massimo Losa ◽  
Markus Gerke

This paper introduces a methodology for predicting and mapping surface motion beneath road pavement structures caused by environmental factors. Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) measurements, geospatial analyses, and Machine Learning Algorithms (MLAs) are employed for achieving the purpose. Two single learners, i.e., Regression Tree (RT) and Support Vector Machine (SVM), and two ensemble learners, i.e., Boosted Regression Trees (BRT) and Random Forest (RF) are utilized for estimating the surface motion ratio in terms of mm/year over the Province of Pistoia (Tuscany Region, central Italy, 964 km2), in which strong subsidence phenomena have occurred. The interferometric process of 210 Sentinel-1 images from 2014 to 2019 allows exploiting the average displacements of 52,257 Persistent Scatterers as output targets to predict. A set of 29 environmental-related factors are preprocessed by SAGA-GIS, version 2.3.2, and ESRI ArcGIS, version 10.5, and employed as input features. Once the dataset has been prepared, three wrapper feature selection approaches (backward, forward, and bi-directional) are used for recognizing the set of most relevant features to be used in the modeling. A random splitting of the dataset in 70% and 30% is implemented to identify the training and test set. Through a Bayesian Optimization Algorithm (BOA) and a 10-Fold Cross-Validation (CV), the algorithms are trained and validated. Therefore, the Predictive Performance of MLAs is evaluated and compared by plotting the Taylor Diagram. Outcomes show that SVM and BRT are the most suitable algorithms; in the test phase, BRT has the highest Correlation Coefficient (0.96) and the lowest Root Mean Square Error (0.44 mm/year), while the SVM has the lowest difference between the standard deviation of its predictions (2.05 mm/year) and that of the reference samples (2.09 mm/year). Finally, algorithms are used for mapping surface motion over the study area. We propose three case studies on critical stretches of two-lane rural roads for evaluating the reliability of the procedure. Road authorities could consider the proposed methodology for their monitoring, management, and planning activities.


2021 ◽  
pp. 1-13
Author(s):  
Ahmadreza Hajihosseinloo ◽  
Maryam Salahinejad ◽  
Mohammad Kazem Rofouei ◽  
Jahan B. Ghasemi

Knowing stability constants for the complexes HgII with extracting ligands is very important from environmental and therapeutic standpoints. Since the selectivity of ligands can be stated by the stability constants of cation–ligand complexes, quantitative structure–property relationship (QSPR) investigations on binding constant of HgII complexes were done. Experimental data of the stability constants in ML2 complexation of HgII and synthesized triazene ligands were used to construct and develop QSPR models. Support vector machine (SVM) and multiple linear regression (MLR) have been employed to create the QSPR models. The final model showed squared correlation coefficient of 0.917 and the standard error of calibration (SEC) value of 0.141 log K units. The proposed model presented accurate prediction with the Leave-One-Out cross validation ( Q LOO 2  = 0.756) and validated using Y-randomization and external test set. Statistical results demonstrated that the proposed models had suitable goodness of fit, predictive ability, and robustness. The results revealed the importance of charge effects and topological properties of ligand in HgII - triazene complexation.


Sign in / Sign up

Export Citation Format

Share Document