scholarly journals The Potential for Integration of Wind and Tidal Power in New Zealand

2020 ◽  
Vol 12 (5) ◽  
pp. 1807 ◽  
Author(s):  
Navid Majdi Nasab ◽  
Jeff Kilby ◽  
Leila Bakhtiaryfard

This research focuses on proposing and evaluating an optimized hybrid system of wind and tidal turbines operating as a renewable energy generating unit in New Zealand. Literature review indicates increasing worldwide investment in offshore renewable energy in recent years. Offshore energy shows a high potential as an alternative energy generation solution to that of fossil fuels. Using the capacities of wind and tidal power in renewable technologies would be a suitable alternative for fossil fuels and would help prevent their detrimental effects on the environment. It is a cost-effective procedure for the power generation sector to maximize these renewables as a hybrid system. At the design phase, turbine types appropriate to environmental conditions for an area with high wind speed and tidal flow need to be considered. When selecting which turbines should be used, horizontal or vertical axis, number and length of blades, and optimized rotational speed are all important to get maximum capacity from either the wind or tidal energy for the hybrid system. Comprehensive simulation models of the hybrid system are now being set up, using several available commercial software packages such as QBlade, Simulink, and RETScreen. Several different parameters will be required for these simulation models to run in order to test performance, capacity and efficiency of the proposed hybrid system. To decide which regions are suitable for the hybrid system, it will be necessary to analyze available wind and tide records from NIWA, and online databases such as GLOBAL ATLAS. This next phase of research will aim to create optimized scenarios for the hybrid model by considering the effect of wind and water speed on performance. After deciding which region and scenarios are suitable, it will also be necessary to evaluate the costs and returns of a hybrid system. This final phase will be performed using the RETScreen simulation model.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5888
Author(s):  
Saulius Baskutis ◽  
Jolanta Baskutiene ◽  
Valentinas Navickas ◽  
Yuriy Bilan ◽  
Wojciech Cieśliński

Environmental pollution, energy supply and security of supply have become major issues across the world due to climate change, limited energy sources, energy price volatility and energy supply constraints. Energy availability, energy efficiency and the replacement of fossil fuels by renewable energy sources are key factors in the global development of sustainable energy. In many countries with limited fossil fuel resources, the sustainable development of renewable energy sources is an important tool in reducing dependence on imported fuels. Some alternative energy sources, such as wind, solar, tidal and hydropower, seem almost inexhaustible. With the exception of tidal energy, all of these sources have been used extensively and for a long time. This article examines the improvement of energy security and the government’s actions to promote the use of renewable energy sources, focusing on increasing energy efficiency and reducing energy intensity and dependence on energy imports in Lithuania. In addition, the article provides the state of renewable energy sources in Lithuania, aspects of sustainability and future development directions and perspectives.


2014 ◽  
Vol 953-954 ◽  
pp. 637-649
Author(s):  
Xiao Qing Cheng ◽  
Xi Zhang ◽  
Li Xin Yi

The global economic and social developments depend largely on fossil fuels nowadays. To cope with energy crisis and environment problems caused by consumption of fossil fuels, the renewable energy exploitation is an alternative path. As one kind of renewable ocean energy which can be applied into production, tidal energy is mainly utilized in electricity generation. China has abundant tidal energy resource, which mainly distribute in the southeast coastal areas where power supply is insufficient. China's tidal power generation started in 1958, and some experience and technologies have been accumulated from the long-time history of tidal power station construction and operation. At present, China’s tidal energy’s development and utilization are still in low level, and remain plagued by several challenges, such as high cost, and insufficiency of preferential policies and regulations. While, China's tidal power generation must be very promising in the foreseeable future, with a great deal of attention paid to the utilization of renewable energy and the perception of sustainable development.


2021 ◽  
Author(s):  
◽  
Namhla Faith Mtukushe

The majority of South Africa’s electricity is generated from fossil-fuel plants that use mainly coal. In these power plants, the combustion of these fossil fuels liberates greenhouse gasses into the atmosphere that contribute to climate change. This problem coupled with the rapid depletion of fossil fuels has necessitated the need to explore the alternative form of energy such as renewable energy. Tidal energy is a form of ocean energy that can be considered as an alternative energy resource or renewable energy source. This form of energy has not been explored in South Africa, the only country in the world that is bounded by two oceans; the Indian and the Atlantic. Tidal energy can be harnessed from the movements of tides to generate electrical power. This study considered the possibility of harnessing tidal energy as the alternative energy source for power generation which can be used to mitigate the challenges associated with the energy crisis currently being experienced in the country. For this study, an extensive literature review was carried out to understand the tidal phenomenon, the concept of energy conversion from tides, the different techniques or technologies that can be used to generated power from tides. There are two main technologies used for converting tidal energy to electrical energy and these are the tidal barrage and the tidal streams. Based on the inferences drawn from the literature reviews concerning the tides experienced around the South Africa coastal region, it was identified that the tidal stream technique is applicable. Harmonic analysis of the tidal resource for four identified sites was conducted, from these analyses, Esikhawini was selected as an optimum site. Tidal streams extract the kinetic energy of tides and the mode of operation of tidal stream plants is determined by the type of tidal turbine employed. Several turbine designs were reviewed, a helical cross-flow turbine was selected due to its self-starting capability and its ability to operate in reverse stream flows. For this helical turbine, an analytical model using the blade element momentum theory (BEMT) was developed and was implemented on MATLAB environment. For the experimentation, a prototype was developed and tested in a laboratory concrete flume in the department of Civil Engineering at the University of KwaZulu-Natal. Based on the experimental results, an analysis of the unit turbine was done which was used to propose a conceptualized tidal power plant. Hence, the proposed tidal power plant was used to justify the reason for embarking on this study which is to ascertain the possibility of establishing a tidal power plant in South Africa.


2020 ◽  
Author(s):  
Satya Prasad Paruchuru ◽  
Siva Kalyani Koneti ◽  
Deepthi Jammula ◽  
Jashwitha Nuthalapati

Abstract Capturing the tidal energy is one of the ways of tapping natural and renewable energy which do not involve the cost of working fluid/ fuel. The present work focuses on some of the feasibility aspects of setting up of major tidal power plants along the seacoast. Besides, the present study synergizes on methods of estimating the power-producing capacities in regions along the seacoast. Estimation of power-producing capacities, calendar month-wise, and lunar month-wise gave handy information. Also, the estimation of power-producing capacities of different regions along a location gave clarity on the probable regions of interest for producing power simultaneously. A comparison of the estimates with the details of the literature authenticated the study. A discussion of producing more tidal power in specific locations gave insights into the aspects that may have been ignored in the literature. Geographic restrictions along the local seacoast like identifying the security-sensitive regions rationalized the estimating procedures. The paper includes a discussion of various factors that address the feasibility concerns. The study supposedly helps space exploration too.


2020 ◽  
Vol 15 (3) ◽  
pp. 360-367
Author(s):  
Khagendra Bahadur Thapa ◽  
Arbin Maharjan ◽  
Kishor Kaphle ◽  
Kishor Joshi ◽  
Tara Aryal

The adaptation of renewable energy has been increasing in a very encouraging way all over the world. Among various renewable energy resources, wind and solar energy are the promising sources of alternative energy. Wind and solar photovoltaic (PV) have been employed in parallel as a hybrid system for better electricity service. This paper presents a case study and modeling of wind-solar hybrid system in Hriharpur Gadi village, Sindhuli District, Nepal. The hybrid system yields 110kWh of energy per day meeting the village’s electricity demand of 87 kWh per day. Moreover, the hybrid power system with battery storage system is modeled using MATLAB simulator. Further, improvising in the existing modeling has been presented to enhance the efficiency and effectiveness of the system.


2015 ◽  
Vol 798 ◽  
pp. 102-110
Author(s):  
Shehret Tilvaldyev ◽  
Jorge Flores-Garay ◽  
Alfredo Villanueva Montellano ◽  
Delfino Cornejo Monroy ◽  
Alejandra Flores Ortega

Minerals, coal, oil and gas are all examples of nonrenewable resources and most of these pollute the environment when used. Most alternatives to fossil fuels use renewable resources (resources that can be replenished rapidly by nature), which are usually pollute the environment less. There are many forms of alternative fuels that are being utilized today: classic solar, nuclear, wind, hydro, geothermal and Tidal power generators. Many efforts have been madeto develop the ways how to generate power from reusable sources of energy, that have enabled significant progress made towards of reducing greenhouse gas emissions and increasing security of supply and improving competitiveness.The analysis of developing of Renewable Energy sector in Europe (EU-28) since 1970 and 2020 targets presented.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 426
Author(s):  
Navid Majdi Nasab ◽  
Md Rabiul Islam ◽  
Kashem Muttaqi ◽  
Danny Sutanto

The Cook Strait in New Zealand is an ideal location for wind and tidal renewable sources of energy due to its strong winds and tidal currents. The integration of both technologies can help to avoid the detrimental effects of fossil fuels and to reduce the cost of electricity. Although tidal renewable sources have not been used for electricity generation in New Zealand, a recent investigation, using the MetOcean model, has identified Terawhiti in Cook Strait as a superior location for generating tidal power. This paper investigates three different configurations of wind, tidal, and wind plus tidal sources to evaluate tidal potential. Several simulations have been conducted to design a DC-linked microgrid for electricity generation in Cook Strait using HOMER Pro, RETScreen, and WRPLOT software. The results show that Terawhiti, in Cook Strait, is suitable for an offshore wind farm to supply electricity to the grid, considering the higher renewable fraction and the lower net present cost in comparison with those using only tidal turbines or using both wind and tidal turbines.


2014 ◽  
Vol 126 (2) ◽  
pp. 34
Author(s):  
Timothy D. Finnigan

The ocean represents an enormous store of renewable energy – far more than could ever be used by the global population. The challenge is: how do we go about extracting this energy in a sustainable and economical way? It is the sun and the moon that give us this energy, in the form of waves, tides and thermal gradients. The amount of energy stored in the ocean, and continually replenished by the sun and moon, is well quantified, and certifiably massive. Despite decades of effort, attempts to extract meaningful quantities of energy from these ocean sources continue to be met with monumental challenges. Given the anticipated growth in energy demand, and continuing concern with the use of fossil fuels, it is now time to push through the barriers. The most widespread and easily tapped sources of ocean energy are surface waves and tidal currents. This presentation will focus on these two sources only.


2022 ◽  
Vol 1212 (1) ◽  
pp. 012038
Author(s):  
H Azikin ◽  
Nurhidayat ◽  
E Affandy ◽  
S S Syahruddin

Abstract The use of energy, especially electrical power, is needed by the wider community— lots of alternative energy from nature, especially in Indonesia that can be utilized to produce electricity. One of the newest alternative examples is the energy produced by tides. Tidal energy is a type of renewable energy that is relatively more predictable in number. One method that can process the waves is the Least Square Method. Where the results of data processing using this method can be known based on tidal observations for 15 days on Toaya Beach located in Donggala Regency, Central Sulawesi, the types of tidal types that occur based on the results of Formzahl’s count is 0.357 that the tidal types that occur are varied types leaning to double daily, with a Root Mean Square Error (RMSE) of 0.028, which means that the difference between predictive results and observational data is accurate. Then also obtained the value of the design water level elevation that is the highest high water level (HHWL) is 2.7 meters, and the lowest low water level (LLWL) is -0.3 meters with a height difference is 3.0 meters. So with the high height difference, the total energy generated by two times a day with a sea area of 9 km2 which is capable of producing energy movement from seawater can be calculated the potential energy generated from the waves of Toaya Beach, which is 5,53 MW.


2021 ◽  
Vol 16 ◽  
pp. 67-77
Author(s):  
T. A. Boghdady ◽  
Ali J. Alamer ◽  
Mina M. Yousef ◽  
Ahmed M. Elshafee ◽  
M. A. Mostafa Hassan ◽  
...  

The main goal of this work is to find economical alternative energy supply solution for poultry industry in Egypt. By studying the economic feasibility of using hybrid renewable energy resources as main source of power for existing poultry farm in Egypt to reduce existing operational cost of energy and add resilience and reliability dimensions for the operation of poultry farm in rural locations. In addition to reducing the environmental impact of using poultry litter in its fundamental form. This hybrid system connected to grid is used in the company to avoid instability problem in which the company suffered when they applied biomass energy source as main power source to their farm in Lebanon. The grid will be used as energy storage during the excess energy production form the hybrid system and to add some resilience and reliability dimensions to the hybrid system to prevent instability to the farm ‘s grid due to the high penetration of renewable energy. The economic feasibility is evaluated of this configuration using HOMER versus different configurations and sizes for these systems including the existing situation of depending only on grid as main source of energy. The results showed that the best configuration is 400 kW biomass generator, and 500 kW PV plant will satisfy the average demanded load of 9660 kWh daily with using the grid as backup energy source. The cost of energy for this configuration will be 0.0894 $/kWh which is lower than continuing existing situation depending on the grid as main source of power in which its Cost of Energy (COE) will reach during the lifetime of the project to 0.184 $/kWh due to the increase in COE in Egypt by 8%.


Sign in / Sign up

Export Citation Format

Share Document