scholarly journals A Design-Based Learning Approach for Fostering Sustainability Competency in Engineering Education

2020 ◽  
Vol 12 (7) ◽  
pp. 2958 ◽  
Author(s):  
Zhiliang Huang ◽  
Annan Peng ◽  
Tongguang Yang ◽  
Shuguang Deng ◽  
Yuexia He

This paper provides and illustrates a design-based learning (DBL) approach for fostering individual sustainability competency in engineering education. We performed two studies with engineering students in typical educational activities. The first study helped students perform a topic-specific design task in the practicum unit of a sensor technology course, which compared the performance of the DBL approach and conventional passive learning approach. The second study guided students to develop innovative projects for participating in the "Internet Plus" Innovation and Entrepreneurship Competition (IPIEC). To validate the proposed approach, stakeholder questionnaires and performance evaluations were implemented. The results show that the DBL approach was viable for sustainability competency teaching in terms of learning demand and teaching procedure. We found that students in the DBL group gave more prominence in the individual competencies, such as system-thinking, multidisciplinary applications, and collaboration. These findings suggest that applying the DBL approach to train sustainability competency in engineering education is beneficial for promoting students’ abilities in dealing with challenges involved in sustainability practice.

Author(s):  
Lindsay M. Corneal

The advanced energy storage industry is a rapidly growing field. This industry is looking for engineering graduates with the skills and training to work in the area of energy storage. The School of Engineering at Grand Valley State University is developing a three-course certificate in advanced energy to address this need. The objective of the certificate is to prepare students with a sound engineering and science education which is augmented with knowledge of energy as applied to advanced energy storage for electrified vehicles and power management. As part of the certificate in advanced energy, a course is being developed in Materials for Energy Storage. This course will study the components of electrochemical cells and the various materials used for these components. The focus will be on the properties of the different materials, the benefits and drawbacks of each one, and the selection of materials for specific applications. The interaction between the materials of the individual components within the cells will be examined. Finally, the electrochemical energy storage system will be considered as a whole and the testing and performance of the cells will be studied. This paper will present a description and overview of the course, and the topics that will be covered. As the course is in the development stage, the plans for assessment after its pilot offering will be discussed.


2021 ◽  
Vol 11 (3) ◽  
pp. 44-47
Author(s):  
Kishore S

Entrepreneurship education teaches engineering students in all disciplines the knowledge, tools, and attitudes that are required to identify opportunities and bring them to life. Despite an increased focused on developing and understanding engineering undergraduates’ entrepreneurial mindsets, best practices related to assessing this mindset remain nascent. While some of these existing studies sought to understand perceptions, attitudes, and beliefs, the existing literature is limited in direct attempts to measure students’ entrepreneurial mindsets or beliefs. In this article, we tried to examine the importance of entrepreneurship efforts in engineering education, national support for entrepreneurship, student and faculty attitudes and engagement. We then offer our perspective on the future landscape for innovation and entrepreneurship in engineering education.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2020 ◽  
Vol 6 (4) ◽  
pp. 266-273
Author(s):  
Jeanita W. Richardson

This active learning exercise is designed to deconstruct the impact of social determinants through the assumption of randomly selected personas. As an active learning exercise, it provides opportunities for discussion, problem solving, writing, and synthesis, while incorporating multiple learning style preferences. Part 1 involves assessing the individual social determinants at work. Part 2 involves exploring ways said determinants can enhance community health through collaboration. Assumption of personas unlike one’s own facilitates an open discussion of social position and ranges of factors influential to health without potentially evoking a sense of defensiveness associated with personal privilege (or the lack thereof).


2021 ◽  
Vol 27 (5) ◽  
Author(s):  
Diana Adela Martin ◽  
Eddie Conlon ◽  
Brian Bowe

AbstractThis paper aims to review the empirical and theoretical research on engineering ethics education, by focusing on the challenges reported in the literature. The analysis is conducted at four levels of the engineering education system. First, the individual level is dedicated to findings about teaching practices reported by instructors. Second, the institutional level brings together findings about the implementation and presence of ethics within engineering programmes. Third, the level of policy situates findings about engineering ethics education in the context of accreditation. Finally, there is the level of the culture of engineering education. The multi-level analysis allows us to address some of the limitations of higher education research which tends to focus on individual actors such as instructors or remains focused on the levels of policy and practice without examining the deeper levels of paradigm and purpose guiding them. Our approach links some of the challenges of engineering ethics education with wider debates about its guiding paradigms. The main contribution of the paper is to situate the analysis of the theoretical and empirical findings reported in the literature on engineering ethics education in the context of broader discussions about the purpose of engineering education and the aims of reform programmes. We conclude by putting forward a series of recommendations for a socio-technical oriented reform of engineering education for ethics.


Author(s):  
Rod D. Roscoe ◽  
Samuel T. Arnold ◽  
Ashley T. Clark

Instruction and coursework that link engineering and psychology may enable future engineers to better understand the people they are engineering for (e.g., users and clients) and themselves as engineers (e.g., teammates). In addition, human-centered engineering education may empower engineering students to better solve problems at the intersection of technology and people. In this study, we surveyed students’ conceptions and attitudes toward human systems engineering. We aggregate responses across three survey iterations to discuss students’ knowledge and beliefs, and to consider instructional opportunities for introductory courses.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 137
Author(s):  
Florian Schlosser ◽  
Heinrich Wiebe ◽  
Timothy G. Walmsley ◽  
Martin J. Atkins ◽  
Michael R. W. Walmsley ◽  
...  

Heat pumps are the key technology to decarbonise thermal processes by upgrading industrial surplus heat using renewable electricity. Existing insight-based integration methods refer to the idealised Grand Composite Curve requiring the full exploitation of heat recovery potential but leave the question of how to deal with technical or economic limitations unanswered. In this work, a novel Heat Pump Bridge Analysis (HPBA) is introduced for practically targeting technical and economic heat pump potential by applying Coefficient of Performance curves into the Modified Energy Transfer Diagram (METD). Removing cross-Pinch violations and operating heat exchangers at minimum approach temperatures by combined application of Bridge Analysis increases the heat recovery rate and reduce the temperature lift to be pumped at the same time. The insight-based METD allows the individual matching of heat surpluses and deficits of individual streams with the capabilities and performance of different market-available heat pump concepts. For an illustrative example, the presented modifications based on HPBA increase the economically viable share of the technical heat pump potential from 61% to 79%.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Andreas Peters ◽  
Zoltán S. Spakovszky

Due to their inherent noise challenge and potential for significant reductions in fuel burn, counter-rotating propfans (CRPs) are currently being investigated as potential alternatives to high-bypass turbofan engines. This paper introduces an integrated noise and performance assessment methodology for advanced propfan powered aircraft configurations. The approach is based on first principles and combines a coupled aircraft and propulsion system mission and performance analysis tool with 3D unsteady, full-wheel CRP computational fluid dynamics computations and aeroacoustic simulations. Special emphasis is put on computing CRP noise due to interaction tones. The method is capable of dealing with parametric studies and exploring noise reduction technologies. An aircraft performance, weight and balance, and mission analysis was first conducted on a candidate CRP powered aircraft configuration. Guided by data available in the literature, a detailed aerodynamic design of a pusher CRP was carried out. Full-wheel unsteady 3D Reynolds-averaged Navier-Stokes (RANS) simulations were then used to determine the time varying blade surface pressures and unsteady flow features necessary to define the acoustic source terms. A frequency domain approach based on Goldstein’s formulation of the acoustic analogy for moving media and Hanson’s single rotor noise method was extended to counter-rotating configurations. The far field noise predictions were compared to measured data of a similar CRP configuration and demonstrated good agreement between the computed and measured interaction tones. The underlying noise mechanisms have previously been described in literature but, to the authors’ knowledge, this is the first time that the individual contributions of front-rotor wake interaction, aft-rotor upstream influence, hub-endwall secondary flows, and front-rotor tip-vortices to interaction tone noise are dissected and quantified. Based on this investigation, the CRP was redesigned for reduced noise incorporating a clipped rear-rotor and increased rotor-rotor spacing to reduce upstream influence, tip-vortex, and wake interaction effects. Maintaining the thrust and propulsive efficiency at takeoff conditions, the noise was calculated for both designs. At the interaction tone frequencies, the redesigned CRP demonstrated an average reduction of 7.25 dB in mean sound pressure level computed over the forward and aft polar angle arcs. On the engine/aircraft system level, the redesigned CRP demonstrated a reduction of 9.2 dB in effective perceived noise (EPNdB) and 8.6 EPNdB at the Federal Aviation Regulations (FAR) 36 flyover and sideline observer locations, respectively. The results suggest that advanced open rotor designs can possibly meet Stage 4 noise requirements.


Author(s):  
Vincent Chang

With a growing need to reform Chinese higher engineering education, University of Michigan—Shanghai Jiao Tong University Joint Institute (JI) initiated multinational corporation-sponsored industrial-strength Capstone Design Projects (CDP) in 2011. Since 2011, JI has developed 96 corporate-sponsored CDPs since its inception, which include multinational corporation sponsors such as Covidien, Dover, GE, HP, Intel, NI, Philips, and Siemens. Of these projects, healthcare accounts for 27%, energy 24%, internet technology (IT) 22%, electronics 16%, and other industries 11%. This portfolio reflects the trends and needs in the industry, which provides opportunities for engineering students to develop their careers. An accumulated 480 JI students have been teamed up based on their individual backgrounds, specifically electrical engineering, computer engineering, computer science, mechanical engineering, and biomedical engineering. The corporate-sponsored rate grew from 0% in 2010 to 86% in 2014.


Sign in / Sign up

Export Citation Format

Share Document