scholarly journals Environmental Impacts of Beef as Corrected for the Provision of Ecosystem Services

2020 ◽  
Vol 12 (9) ◽  
pp. 3828
Author(s):  
Andrea Bragaglio ◽  
Ada Braghieri ◽  
Corrado Pacelli ◽  
Fabio Napolitano

We aimed to assess whether the environmental impacts in terms of global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), and land occupation (LO) of beef can be decreased when ecosystem and cultural/provisioning services are included in the evaluation. We used four Italian production systems: Fat, with beef imported calves kept in confinement; CoCaI, with beef cows and calves kept in confinement; SpEx, with beef cows and calves kept on pasture and finishing conducted in confinement; and Pod, with Podolian cows and calves kept on pasture and finishing conducted in confinement. After the economic allocation, the GWP of system Pod decreased considerably and showed values lower than those computed for systems CoCaI and SpEx (P < 0.05 and P < 0.001, respectively). System Pod showed the lowest AP and EP as compared with all the other systems (P < 0.01). Systems Fat and CoCaI showed the smallest LO, with values lower than systems Pod (P < 0.05) and SpEx (P < 0.001). We conclude that the environmental impacts of extensive and local beef production systems in terms of GWP, AP, and EP was markedly reduced when the provision of accessory services was included in the calculation. Conversely, LO did not markedly change due to the high absolute values needed to allow pasture-based feeding. The estimation of additional positive aspects linked to the use of natural pastures, such as removal of carbon dioxide, increased biodiversity, and exploitation of feeds nonedible by humans, may allow a further reduction of LO.

2021 ◽  
Vol 13 (19) ◽  
pp. 11108
Author(s):  
Elio Romano ◽  
Pasquale De Palo ◽  
Flavio Tidona ◽  
Aristide Maggiolino ◽  
Andrea Bragaglio

Life cycle assessment (LCA) was performed in dairy buffalo farms representative of Southern Italian farming systems, similar due to several characteristics, with the exception of wheat production. This work evaluated the impacts derived from this management choice, comparing farms with wheat crop (WWC) or not (NWC). In agreement with the literature, economic allocation was chosen as a useful strategy to attribute equivalents to by-products, i.e., culled animals; the same criterion was also adopted to assign pollutants to wheat grain, limited to WWC farms. Environmental impacts in terms of Global Warming Potential (GWP, kg CO2 eq), Acidification Potential (AC, g SO2 eq), Eutrophication Potential (EU, g PO43-eq), Agricultural Land Occupation (ALO, m2y) and Water Depletion (WD, m3) were estimated. The production of wheat crop significantly affected (p < 0.05) the Agricultural Land Occupation (ALO) category as WWC farms need adequate land. WWC farms could allow a significant reduction in eutrophication (EU) compared to NWC farms (p < 0.05).


2017 ◽  
Vol 23 (1) ◽  
pp. 27-35
Author(s):  
TEMITAYO A. EWEMOJE ◽  
OLUFEMI P. ABIMBOLA ◽  
OLAYINKA A. OMOTOSHO

The study examined four scenarios for reduction of environmental impacts with use of 100 % purchased electricity in all processing activities as first scenario while second scenario was the use of 100 % electricity from diesel generators. Third and fourth scenarios were to use 50 % each of both purchased electricity and diesel-generated electricity in all activities. Most of the Energy Use (EU) came during the freezing process. Global Warming Potential (GWP) value for Scenario 2 is predominantly higher than the values for other three scenarios. The results show that the major source for global warming potential for Scenario 2 is the freezing process, whereas for the other three scenarios the animal management represents the main contributor. Similar to GWP, the Acidification Potential and Eutrophication Potential values for Scenario 2 were higher, although very small and this may be attributed to diesel generators emitting slightly higher amounts of NOx and SOx.


2012 ◽  
Vol 229-231 ◽  
pp. 1802-1806 ◽  
Author(s):  
Zhi Feng Liu ◽  
Shao Bo Pan ◽  
Zhong Wei Wu ◽  
Yi Fei Zhan

Based on software GaBi4.3, life cycle assessment method is used to analyze the abiotic depletion, energy consumption and environmental emissions of recycling process of 1kg waste thermosetting phenolic laminated plastic. This paper also takes advantage of CML2001 provided by GaBi to assess the environmental impacts through the recycling process. The result shows that the rank of environmental impact is: Regeneration> Molding > Crush; the main environmental impacts are global warming potential, acidification potential and eutrophication potential.


2006 ◽  
Vol 7 (1) ◽  
pp. 29
Author(s):  
S. N. Rampersad

Tomato production in Trinidad has suffered considerable losses in yield and fruit quality due to infections of hitherto surmised etiology. In order to develop strategies for controlling viral diseases in tomato, the relative distribution and incidence of seven viruses that commonly infect tomato were determined. Of the 362 samples tested, Potato yellow mosaic Trinidad virus (PYMTV) was found in every farm except two and was present at relatively high incidence throughout the country. Tobacco mosaic virus (TMV) and Tobacco etch virus (TEV) were found in fewer farms and at lower incidences while the other viruses were absent. Single infections of either virus were more common than double infections and multiple infections were rare but present. The results indicated that PYMTV is the predominant and most important viral pathogen in tomato production systems in Trinidad; however, begomovirus disease management strategies will also have to accommodate controls Accepted for publication 10 January 2006. Published 9 March 2006.


2021 ◽  
Vol 310 ◽  
pp. 108631
Author(s):  
Pradeep Wagle ◽  
Prasanna H. Gowda ◽  
Brian K. Northup ◽  
James P.S. Neel ◽  
Patrick J. Starks ◽  
...  

2015 ◽  
Vol 183 ◽  
pp. 291-307 ◽  
Author(s):  
Niklas von der Assen ◽  
André Sternberg ◽  
Arne Kätelhön ◽  
André Bardow

Potential environmental benefits have been identified for the utilization of carbon dioxide (CO2) as a feedstock for polyurethanes (PUR). CO2 can be utilized in the PUR supply chain in a wide variety of ways ranging from direct CO2 utilization for polyols as a PUR precursor, to indirect CO2 utilization for basic chemicals in the PUR supply chain. In this paper, we present a systematic exploration and environmental evaluation of all direct and indirect CO2 utilization options for flexible and rigid PUR foams. The analysis is based on an LCA-based PUR supply chain optimization model using linear programming to identify PUR production with minimal environmental impacts. The direct utilization of CO2 for polyols allows for large specific impact reductions of up to 4 kg CO2-eq. and 2 kg oil-eq. per kg CO2 utilized, but the amounts of CO2 that can be utilized are limited to 0.30 kg CO2 per kg PUR. The amount of CO2 utilized can be increased to up to 1.7 kg CO2 per kg PUR by indirect CO2 utilization in the PUR supply chain. Indirect CO2 utilization requires hydrogen (H2). The environmental impacts of H2 production strongly affect the impact of indirect CO2 utilization in PUR. To achieve optimal environmental performance under the current fossil-based H2 generation, PUR production can only utilize much less CO2 than theoretically possible. Thus, utilizing as much CO2 in the PUR supply chain as possible is not always environmentally optimal. Clean H2 production is required to exploit the full CO2 utilization potential for environmental impact reduction in PUR production.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 448-449
Author(s):  
Emily Conlin ◽  
Herbert Lardner ◽  
Jennifer L Ellis ◽  
Ira B Mandell ◽  
Katharine M Wood

Abstract Worldwide, beef production systems represent a significant source of greenhouse gas (GHG), and enteric methane (CH4) emissions are the primary concern. The objective of this experiment was to determine whether biochar (Oregon Biochar Solution, White City, OR) supplementation can reduce CH4 emissions from grazing beef cows. Biochar is a stable form of carbon produced through the pyrolysis of organic matter (typically forestry waste). Sixty-four cows and their calves were blocked by cow body weight and calf age, and randomly allocated to 8 paddocks, each with 8 cow-calf pairs. Using a crossover design, each paddock was assigned to one of two treatments: (1) biochar supplemented at approximately 3% of estimated dry matter intake (DMI) or (2) control (no biochar). Biochar was incorporated into a pellet containing 45% biochar, 42.5% wheat midds, 10% canola oil, and 2.5% dry molasses and fed in a portable trough once daily. Each period consisted of 28 days: 21 days for biochar adaptation and 7 days for data collection. Enteric gas emissions from each paddock were measured using C-Lock GreenFeed trailers (C-Lock Inc., Rapid City, SD, USA) with pasture DMI estimated using paddock entry/exit quadrats during each sampling week. Enteric CH4 emissions expressed as g CH4/d were 249 and 260 ± 50.3 g (P ≥ 0.37) for control and biochar, respectively. Similarly, g CH4/kg DM and g CH4/kg BW were not affected (P ≥ 0.44) by biochar supplementation on pasture. Biochar supplementation did not affect estimated DMI or cow/calf body weights (P ≥ 0.15). Results suggest that biochar was ineffective for reducing methane emissions from grazing beef cows; however, measures of animal performance were not affected by biochar consumption. Further work is required to determine if type or higher inclusions of biochar can reduce CH4 emissions from beef cattle.


1944 ◽  
Vol 22b (5) ◽  
pp. 140-153 ◽  
Author(s):  
R. Y. Stanier ◽  
Sybil B. Fratkin

Aerobacter aerogenes, Aerobacillus polymyxa, and Aeromonas hydrophila, representatives of the three genera characterized by a butanediol fermentation, can all oxidize 2,3-butanediol under aerobic conditions. The configuration of the 2,3-butanediol has considerable bearing on its decomposability: Aerobacter aerogenes is inactive on the l-isomer, but attacks both meso- and d-isomers; Aeromonas hydrophila attacks the meso-isomer but not the l- and probably not the d-isomer; Aerobacillus polymyxa can oxidize both l- and meso-2,3-butanediol, but the rate with the former is many times greater than with the latter. Aerobacter aerogenes oxidizes both 2,3-butanediol and acetoin to carbon dioxide and water, a large part of the substrate being simultaneously assimilated. The other two organisms oxidize 2,3-butanediol to acetoin, but can further oxidize the acetoin thus formed only very slowly, if at all. Both Aerobacter aerogenes and Aerobacillus polymyxa are unable to attack 1,3-butanediol, 2-methyl-1,2-propanediol and 1,2-ethancdiol. However they can oxidize 1,2-propanediol to acetol.


2016 ◽  
Vol 56 (7) ◽  
pp. 1070 ◽  
Author(s):  
S. G. Wiedemann ◽  
M.-J. Yan ◽  
C. M. Murphy

This study conducted a life cycle assessment (LCA) investigating energy, land occupation, greenhouse gas (GHG) emissions, fresh water consumption and stress-weighted water use from production of export lamb in the major production regions of New South Wales, Victoria and South Australia. The study used data from regional datasets and case study farms, and applied new methods for assessing water use using detailed farm water balances and water stress weighting. Land occupation was assessed with reference to the proportion of arable and non-arable land and allocation of liveweight (LW) and greasy wool was handled using a protein mass method. Fossil fuel energy demand ranged from 2.5 to 7.0 MJ/kg LW, fresh water consumption from 58.1 to 238.9 L/kg LW, stress-weighted water use from 2.9 to 137.8 L H2O-e/kg LW and crop land occupation from 0.2 to 2.0 m2/kg LW. Fossil fuel energy demand was dominated by on-farm energy demand, and differed between regions and datasets in response to production intensity and the use of purchased inputs such as fertiliser. Regional fresh water consumption was dominated by irrigation water use and losses from farm water supply, with smaller contributions from livestock drinking water. GHG emissions ranged from 6.1 to 7.3 kg CO2-e/kg LW and additional removals or emissions from land use (due to cultivation and fertilisation) and direct land-use change (due to deforestation over previous 20 years) were found to be modest, contributing between –1.6 and 0.3 kg CO2-e/kg LW for different scenarios assessing soil carbon flux. Excluding land use and direct land-use change, enteric CH4 contributed 83–89% of emissions, suggesting that emissions intensity can be reduced by focussing on flock production efficiency. Resource use and emissions were similar for export lamb production in the major production states of Australia, and GHG emissions were similar to other major global lamb producers. The results show impacts from lamb production on competitive resources to be low, as lamb production systems predominantly utilised non-arable land unsuited to alternative food production systems that rely on crop production, and water from regions with low water stress.


2014 ◽  
Vol 4 (1) ◽  
pp. 12 ◽  
Author(s):  
Israel Dunmade

A stapler is a mechanical device used to join two or more sheets of paper together by driving a thin metal staple through the sheets. They are widely used in schools, offices, business, government and homes. The anticipated large quantity of waste that is disposed of annually present great risk of environmental pollution and opportunities for economically viable resource recycling. This study evaluates potential environmental impacts of a Stapling machine and its end-of-life management opportunities. Environmental lifecycle assessment (LCA) process was used for the evaluation. The assessment was implemented with the aid of SimaPro software version 7.3.3.Results of the analyses revealed that climate change and eutrophication are the significant potential environmental impacts. Each Stapler has 1.265130 kg CO2-eq in Global Warming Potential and 0.113067 max kg O2-eq as its Eutrophication Potential. Further examination also showed that most of the impacts are from material selection, product distribution, and end-of-life management of the stapling machine. This study provides insights on potential environmental impacts of stapling machines and potential opportunities for improvements in their end-of-life management.


Sign in / Sign up

Export Citation Format

Share Document