scholarly journals Dynamic Model of a Sustainable Water Resources Utilization System with Coupled Water Quality and Quantity in Tianjin City

2020 ◽  
Vol 12 (10) ◽  
pp. 4254
Author(s):  
Yutong Tian ◽  
Chunhui Li ◽  
Yujun Yi ◽  
Xuan Wang ◽  
Anping Shu

With the development of industrial and agricultural production and the social economy, the demand for water resources has gradually increased. In this paper, based on the principles of system dynamics, a sustainable water resources utilization model with coupled water quality and quantity is established using STELLA software to assess the sustainable use of water resources. The model includes two modules: a water supply module and a water quality module. The water supply module includes four sub-systems: economy, population, water supply, and water demand. The water quality module consists of an environmental sub-system. The model is suitable for Tianjin, where water resources are scarce. Calibration is performed using data from 2013–2016, and verification is performed using data from 2017. The simulation results are good. In order to compare the sustainable use of water resources in different development scenarios in Tianjin for 2025, a sensitivity analysis is performed for each variable, and four decision variables are selected to establish four water resources use scenarios (Scenarios 1–4). The results show that, compared with scenario 1, water shortages in scenarios 2 and 3 are delayed. Scenario 4, with stable economic growth and environmental consideration, can effectively resolve the contradiction between water supply and demand in the future, and is more conducive to the improvement of water quality. Finally, based on the above research, measures to solve water resources problems are proposed, in order to provide a reference for the sustainable use of water resources and optimization of water resources allocation in Tianjin.

2014 ◽  
Vol 501-504 ◽  
pp. 1951-1955
Author(s):  
Xue Liang Lv ◽  
Jin Zhang Qiu ◽  
Liang Ming Hu ◽  
Jin Ping Zhang ◽  
Bin Zhang

On the basis of comprehensive analysis of water supply and the development of social economy in Zhengzhou, analysis of the balance of supply and demand of water resources and water-saving potential in Zhengzhou center city, and identified the water conservation planning target of Zhengzhou City center in 2015, it is concluded that water-saving potential in Zhengzhou City center in 2015 is 3000.28×104 m3; and put forward the countermeasures and measures of saving water from the aspects of industry and comprehensive life, for the water conservation planning of Zhengzhou City center in 12th Five-year to provide the reference basis.


Author(s):  
Fang Wan ◽  
Lingfeng Xiao ◽  
Qihui Chai ◽  
Li Li

Abstract With the rapid development of economy and society, the contradiction between supply and demand of water resources is increasing. Efficient utilization and allocation of limited water resources are one of the main means to solve the above contradictions. In this paper, the multidimensional joint distribution of natural streamflow series in reservoirs is constructed by introducing the mixed Copula function, and the probability of wet and dry encounters between natural streamflow is analyzed. Luan River is located in the northeastern part of Hebei Province, China, taking the group of Panjiakou Reservoir, Douhe Reservoir and Yuqiao Reservoir in the downstream of Luan River Basin as an example, the probabilities of synchronous and asynchronous abundance and depletion of inflow from the reservoirs are calculated. The results show that the probability of natural streamflow series between reservoirs is 61.14% for wetness and dryness asynchronous, which has certain mutual compensation ability. Therefore, it is necessary to minimize the risk of water supply security in Tianjin, Tangshan and other cities, and strengthen the optimal joint water supply scheduling of reservoirs. The research results are reasonable and reliable, which can provide reference for water supply operation of other basins.


Author(s):  
Karolina Yu. Popova ◽  
◽  
Oksana S. Prokhorenko ◽  
Tanyana Yu. Lashchinina ◽  
◽  
...  

The article notes that in recent years, water quality has deteriorated sharply. To reduce this process, the introduction of ecosystems in economic entities is required. However, these measures must be subsidized by the state, as the costs are too high. It is necessary to adopt an environmental policy that would contributed to the organization of control over the use of water resources.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 115 ◽  
Author(s):  
Roxelane Cakir ◽  
Mélanie Raimonet ◽  
Sabine Sauvage ◽  
Javier Paredes-Arquiola ◽  
Youen Grusson ◽  
...  

Modeling is a useful way to understand human and climate change impacts on the water resources of agricultural watersheds. Calibration and validation methodologies are crucial in forecasting assessments. This study explores the best calibration methodology depending on the level of hydrological alteration due to human-derived stressors. The Soil and Water Assessment Tool (SWAT) model is used to evaluate hydrology in South-West Europe in a context of intensive agriculture and water scarcity. The Index of Hydrological Alteration (IHA) is calculated using discharge observation data. A comparison of two SWAT calibration methodologies are done; a conventional calibration (CC) based on recorded in-stream water quality and quantity and an additional calibration (AC) adding crop managements practices. Even if the water quality and quantity trends are similar between CC and AC, water balance, irrigation and crop yields are different. In the context of rainfall decrease, water yield decreases in both CC and AC, while crop productions present opposite trends (+33% in CC and −31% in AC). Hydrological performance between CC and AC is correlated to IHA: When the level of IHA is under 80%, AC methodology is necessary. The combination of both calibrations appears essential to better constrain the model and to forecast the impact of climate change or anthropogenic influences on water resources.


Hydrology ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 93 ◽  
Author(s):  
Winfred Kilonzo ◽  
Patrick Home ◽  
Joseph Sang ◽  
Beatrice Kakoi

Urbanization has caused limitations on water resources, while climate change has reduced amounts of surface water in some parts of the world. Kikuyu, a suburban area in Kiambu county, Kenya, is facing this challenge. The major challenge in the study is scarcity of potable water, resulting in inadequate water supply to Kikuyu residents. Currently, only 63.6% of the population is being supplied with water by Kikuyu Water Company, the company mandated to supply water to the area. Water demand was 2972 m3/day in 2015 and was projected to be 3834 m3/day by 2025. This has put pressure on the already exploited clean water resources, making it necessary to seek additional sources of domestic water. Storage capacity and water quality of surface water bodies, especially small reservoirs whose water can be used to ease the demand, need to be assessed for supplemental water supply. This study aimed at assessing the suitability of the abandoned quarry reservoir as a source of potable urban water by determining its storage capacity characteristics and water quality status. Volume characteristics were determined using bathymetry survey in January 2019. Water samples were collected in January and August 2019 and analyzed for chemical, physical, and bacteriological quality, as per the American Public Health Association (APHA) standard methods for water and wastewater. Parameters were evaluated based on World Health Organization (WHO) and Kenya Bureau of Standards (KEBS) guidelines for drinking water, and rated based on the drinking water quality index (WQI). The reservoir’s maximum storage capacity was found to be 128,385 m3, the surface area was 17,699 m2, and the maximum depth was 15.11 m. Nineteen of the twenty-five investigated parameters were within the acceptable standards. However, the concentrations of manganese (Mn), cadmium (Cd), iron (Fe), turbidity, total coliforms, and Escherichia coli (E. coli) were above the acceptable limits. Manganese and iron levels increased with depth. The overall WQI of the reservoir was 82.51 and 85.85 in January and August, respectively. Therefore, based on WQI rating, the water scored a good quality rating and could be used for domestic supply upon treatment. The original achievement of this study is establishment of the volume of the water in the quarry as an additional source of water to the nearby community, along with water quality status.


2019 ◽  
Vol 81 ◽  
pp. 01009 ◽  
Author(s):  
Sabir Nurtazin ◽  
Niels Thevs ◽  
Margulan Iklasov ◽  
Norman Graham ◽  
Ruslan Salmurzauli ◽  
...  

Water is a scarce resource in Central Asia, and many catchments span international boundaries, among them that of the Ili River, which is shared by China and Kazakhstan. Since 1970, the natural hydrological regime of the Ili River, both absolute flow rates and cycles, has changed due to construction of reservoirs such as that at Kapchagai, as well as natural climatic cycles and the growth of water consumption in the basin. Using data from Kazhydromet, we calculated that flow rates below Kapchagai dam averaged 468 m3/sec before construction of the dam, 366 m3/sec while the reservoir was being filled, and 489 m3/sec between 1988 and 2013. The dam has profoundly altered the annual cycle of flows in the river, with reductions in the summer and increases in the winter, when water is released to produce hydropower. The effects of these changes are being heightened by China’s increasing diversion of the river’s water. The sustainable use of decreasing water resources to conserve the biodiversity of the Ili-Balkhash basin’s ecosystems mandates a solution to the water allocation challenge between China and Kazakhstan. This will require a basin-wide approach that includes modernization of water distribution systems and careful consideration to relative priority needs for food, hydropower, and communal uses in both countries.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1085 ◽  
Author(s):  
Boyang Sun ◽  
Xiaohua Yang

In order to comprehensively evaluate the water resources carrying capacity in Xiong’an New Area, a system dynamics (SD) model was established to evaluate the regional water resources carrying capacity, for which several scenarios were designed: the original development scenario, the accelerated industrialization scenario, the environmental governance scenario, and the optimization development scenario. The results show that, compared with the original development scenario, the water resources carrying capacity in Xiong’an New Area can be improved in other scenarios, but a water supply and demand gap will be generated due to the lack of groundwater overdraft and a water transfer project. In 2026, under the accelerated industrialization scenario, the population carrying capacity will be 2.652 million, and the water supply and demand gap will be 1.13 × 108 m3; under the environmental governance scenario, the population carrying capacity will be 2.36 million, and the water supply and demand gap will be 0.44 × 108 m3; under the optimal development scenario, the population carrying capacity will be 2.654 million, and since the supply of water resources will be greater than the demand, there will not be a gap between supply and demand, making it the most feasible scenario to effectively alleviate the tension between industry restructuring, environmental management, and water resources development and utilization. The findings of this study can provide reference and decision support for optimizing regional water resources allocation and enhancing water resources carrying capacity in Xiong’an New Area.


2018 ◽  
Vol 246 ◽  
pp. 01057
Author(s):  
Jiahui Sun ◽  
Xiaohui Lei ◽  
Ji Liang ◽  
Chao Wang ◽  
Liang Men

Along with social economy development, the total water consumption increased year by year. The conflicts between water supply and water consumption is growing. Water resources optimization dispatch, which is used to allocate water resources to meet the demand of water user on both time scale and spatial scale, plays an important role in water resources management. Aiming at improving the spatial allocation ability of traditional optimization algorithms, a uniform spatial allocation strategy is proposed accordingly. The proposed method is used to improve the performance of optimization algorithm to obtain solutions which can uniform the water supply in spatial scale. Simulation results show that the maximum ratio of water deficiency gained by the proposed method is smaller than that obtained by the original algorithm. The proposed method is effective to balance the demand of water users in spatial scale. Copyright © 2018 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the 10th International Conference on Applied Energy (ICAE2018).


Sign in / Sign up

Export Citation Format

Share Document