scholarly journals Applications of GIS-Based Software to Improve the Sustainability of a Forwarding Operation in Central Italy

2020 ◽  
Vol 12 (14) ◽  
pp. 5716
Author(s):  
Rodolfo Picchio ◽  
Francesco Latterini ◽  
Piotr S. Mederski ◽  
Damiano Tocci ◽  
Rachele Venanzi ◽  
...  

Reducing potential soil damage due to the passing of forest machinery is a key issue in sustainable forest management. Limiting soil compaction has a significant positive impact on forest soil. With this in mind, the aim of this work was the application of precision forestry tools, namely the Global Navigation Satellite System (GNSS) and Geographic Information System (GIS), to improve forwarding operations in hilly areas, thereby reducing the soil surface impacted. Three different forest study areas located on the slopes of Mount Amiata (Tuscany, Italy) were analyzed. Extraction operations were carried out using a John Deere 1410D forwarder. The study was conducted in chestnut (Castanea sativa Mill.) coppice, and two coniferous stands: black pine (Pinus nigra Arn.) and Monterey pine (Pinus radiata D. Don). The first stage of this work consisted of field surveys collecting data concerning new strip roads prepared by the forwarder operator to extract all the wood material from the forest areas. These new strip roads were detected using a GNSS system: specifically, a Trimble Juno Sb handheld data collector. The accumulated field data were recorded in GIS Software Quantum GIS 2.18, allowing the creation of strip road shapefiles followed by a calculation of the soil surface impacted during the extraction operation. In the second phase, various GIS tools were used to define a preliminary strip road network, developed to minimize impact on the surface, and, therefore, environmental disturbance. The results obtained showed the efficiency of precision forestry tools to improve forwarding operations. This electronic component, integrated with the on-board GNSS and GIS systems of the forwarder, could assure that the machine only followed the previously-planned strip roads, leading to a considerable reduction of the soil compaction and topsoil disturbances. The use of such tool can also minimize the risks of accidents in hilly areas operations, thus allowing more sustainable forest operations under all the three pillars of sustainability (economy, environment and society).

Author(s):  
Magnus Lindskog ◽  
Adam Dybbroe ◽  
Roger Randriamampianina

AbstractMetCoOp is a Nordic collaboration on operational Numerical Weather Prediction based on a common limited-area km-scale ensemble system. The initial states are produced using a 3-dimensional variational data assimilation scheme utilizing a large amount of observations from conventional in-situ measurements, weather radars, global navigation satellite system, advanced scatterometer data and satellite radiances from various satellite platforms. A version of the forecasting system which is aimed for future operations has been prepared for an enhanced assimilation of microwave radiances. This enhanced data assimilation system will use radiances from the Microwave Humidity Sounder, the Advanced Microwave Sounding Unit-A and the Micro-Wave Humidity Sounder-2 instruments on-board the Metop-C and Fengyun-3 C/D polar orbiting satellites. The implementation process includes channel selection, set-up of an adaptive bias correction procedure, and careful monitoring of data usage and quality control of observations. The benefit of the additional microwave observations in terms of data coverage and impact on analyses, as derived using the degree of freedom of signal approach, is demonstrated. A positive impact on forecast quality is shown, and the effect on the precipitation for a case study is examined. Finally, the role of enhanced data assimilation techniques and adaptions towards nowcasting are discussed.


2021 ◽  
Vol 11 (15) ◽  
pp. 6982
Author(s):  
Chiara Ferronato ◽  
Gilmo Vianello ◽  
Mauro De Feudis ◽  
Livia Vittori Antisari

The study of Technosols development, spatial distribution and physicochemical characteristics is becoming more and more important in the Anthropocene Era. The aim of the present study was to assess soil features and potential heavy metal release risk of soils developed on different mine tailing types after the waste disposal derived from mining activity in Central Italy. Soils were analyzed for their morphological, physical and chemical properties, and a chemical sequential extraction of heavy metals was performed. The investigated soils were classified as Technosols toxic having in some layer within 50 cm of the soil surface inorganic materials with high concentrations of toxic elements. Our findings showed that the bioavailability of potentially toxic element concentrations in the soil changed according to the origin of the mine tailing. However, because of the acidic pH, there is a serious risk of metals leaching which was reduced where the soil organic matter content was higher.


2018 ◽  
Vol 10 (8) ◽  
pp. 1245 ◽  
Author(s):  
Mehrez Zribi ◽  
Erwan Motte ◽  
Nicolas Baghdadi ◽  
Frédéric Baup ◽  
Sylvia Dayau ◽  
...  

The aim of this study is to analyze the sensitivity of airborne Global Navigation Satellite System Reflectometry (GNSS-R) on soil surface and vegetation cover characteristics in agricultural areas. Airborne polarimetric GNSS-R data were acquired in the context of the GLORI’2015 campaign over two study sites in Southwest France in June and July of 2015. Ground measurements of soil surface parameters (moisture content) and vegetation characteristics (leaf area index (LAI), and vegetation height) were recorded for different types of crops (corn, sunflower, wheat, soybean, vegetable) simultaneously with the airborne GNSS-R measurements. Three GNSS-R observables (apparent reflectivity, the reflected signal-to-noise-ratio (SNR), and the polarimetric ratio (PR)) were found to be well correlated with soil moisture and a major vegetation characteristic (LAI). A tau-omega model was used to explain the dependence of the GNSS-R reflectivity on both the soil moisture and vegetation parameters.


Irriga ◽  
2003 ◽  
Vol 8 (3) ◽  
pp. 242-249 ◽  
Author(s):  
Amauri Nelson Beutler ◽  
José Frederico Centurion ◽  
Cassiano Garcia Roque ◽  
Zigomar Menezes de Souza

INFLUÊNCIA DA COMPACTAÇÃO E DO CULTIVO DE SOJA NOS ATRIBUTOS FÍSICOS E NA CONDUTIVIDADE HIDRÁULICA EM LATOSSOLO VERMELHO   Amauri Nelson BeutlerJosé Frederico CenturionCassiano Garcia RoqueZigomar Menezes de SouzaDepartamento de Solos e Adubos, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP. CEP 14870-000. E-mail: [email protected], [email protected]  1 RESUMO              Este estudo teve como objetivo determinar a influência da compactação e do cultivo de soja nos atributos físicos e na condutividade hidráulica de um Latossolo Vermelho de textura média. O experimento foi conduzido na Universidade Estadual Paulista – Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal (SP). Os tratamentos foram: 0, 1, 2, 4 e 6 passadas de um trator, uma ao lado da outra perfazendo toda a superfície do solo, com quatro repetições. O delineamento experimental foi inteiramente casualizado para a condutividade hidráulica e, em esquema fatorial 5 x 2 para os atributos físicos. Foram coletadas amostras de solo nas faixas de profundidades de 0,02-0,05; 0,07-0,10 e 0,15-0,18 m, por ocasião da semeadura e após a colheita para determinação da densidade do solo, porosidade total, macro e microporosidade do solo. A condutividade hidráulica do solo foi determinada após a colheita. O tempo entre a semeadura e a colheita de soja foi suficiente para aumentar a compactação do solo apenas na condição de solo solto. A compactação do solo reduziu a condutividade hidráulica em relação a condição natural (mata) e a condição de solo solto, sendo que esta não foi reduzida, após a primeira passagem, com o aumento no número de passagens.  UNITERMOS: Densidade do solo, porosidade do solo, infiltração de água, soja.  BEUTLER, A. N.; CENTURION, J. F.; ROQUE, C. G.; SOUZA, Z. M. COMPACTION AND SOYBEAN GROW INFLUENCE ON PHYSICAL ATTRIBUTES AND  HYDRAULIC CONDUCTIVITY IN RED LATOSSOL SOIL   2 ABSTRACT  The purpose of this study was to determine the influence of compaction and soybean grow on physical attributes and hydraulic conductivity of a Red Latossol, medium texture soil. The experiment was carried out in the experimental farm at the Paulista State University  – Agricultural Science College, Jaboticabal – São Paulo state. The treatments were 0, 1, 2, 4 and 6 side-by-side tractor strides on the soil surface with four replications. The experimental design was completely randomized for hydraulic conductivity and a 5 x 2 factorial design for soil physical attributes. Soil samples have been collected at 0.02-0.05, 0.07-0.10 and 0.15-0.18 m depth at sowing season and after harvest in order to determine soil bulk density, total porosity, macro and micro porosity. Soil hydraulic conductivity was determined after harvest. The time period between the soybean sowing and harvesting was enough to increase soil compaction only in loose soil condition. Soil compaction reduced hydraulic conductivity compared to the natural (forest) and loose soil condition  KEYWORDS: Bulk density, soil porosity, water infiltration, soybean.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xuerui Wu ◽  
Shuanggen Jin

In the past two decades, global navigation satellite system-reflectometry (GNSS-R) has emerged as a new remote sensing technique for soil moisture monitoring. Some experiments showed that the antenna of V polarization is more favorable to receive the reflected signals, and the interference pattern technique (IPT) was used for soil moisture and retrieval of other geophysical parameters. Meanwhile, the lower satellite elevation angles are most impacted by the multipath. However, electromagnetic theoretical properties are not clear for GNSS-R soil moisture retrieval. In this paper, the advanced integral equation model (AIEM) is employed using the wave-synthesis technique to simulate different polarimetric scatterings in the specular directions. Results show when the incident angles are larger than 70°, scattering at RR polarization (the transmitted signal is right-hand circular polarization (RHCP), while the received one is also RHCP) is larger than that at LR polarization (the transmitted signal is RHCP, while the received one is left-hand circular polarization (LHCP)), while scattering at LR polarization is larger than that at RR polarization for the other incident angles (1°∼70°). There is an apparent dip for VV and VR scatterings due to the Brewster angle, which will result in the notch in the final receiving power, and this phenomenon can be used for soil moisture retrieval or vegetation corrections. The volumetric soil moisture (vms) effects on their scattering are also presented. The larger soil moisture will result in lower scattering at RR polarization, and this is very different from the scattering of the other polarizations. It is interesting to note that the surface correlation function only affects the amplitudes of the scattering coefficients at much less level, but it has no effects on the angular trends of RR and LR polarizations.


Agriculture ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 252
Author(s):  
Luca Regni ◽  
Primo Proietti

The correct management (dose, time of distribution) of N fertilization in olive growing is still not completely clarified but is nowadays essential in order to guarantee sustainable production. In this regard, in central Italy over a 4-year-period a study was carried out to investigate the effect of high nitrogen availability during oil accumulation in the fruit (second phase of fruit growth) on vegetative and productive activities of olive trees and oil quality. In May of each year, secondary branches were selected and girdled in their proximal part. Afterwards, half of the girdled branches were sprayed three times with a solution containing urea (2% w/w), whereas the other half was sprayed only with water. The nitrogen treatments did not cause any damage to the foliage and fruits nor did it cause appreciable changes in leaf photosynthesis and specific weight, fruit-drop, ripening pattern and weight, water and oil contents, pulp/pit ratio of the fruits, fatty acid composition, polyphenols content, and sensorial characteristics of the oil. The N provided via foliar fertilization during the oil accumulation phase in trees in conditions of good supply of N does not induce significant effects on the vegetative-productive activity of the tree.


2017 ◽  
Vol 17 (11) ◽  
pp. 1885-1892 ◽  
Author(s):  
Giorgio De Guidi ◽  
Alessia Vecchio ◽  
Fabio Brighenti ◽  
Riccardo Caputo ◽  
Francesco Carnemolla ◽  
...  

Abstract. On 24 August 2016 a strong earthquake (Mw = 6.0) affected central Italy and an intense seismic sequence started. Field observations, DInSAR (Differential INterferometry Synthetic-Aperture Radar) analyses and preliminary focal mechanisms, as well as the distribution of aftershocks, suggested the reactivation of the northern sector of the Laga fault, the southern part of which was already rebooted during the 2009 L'Aquila sequence, and of the southern segment of the Mt Vettore fault system (MVFS). Based on this preliminary information and following the stress-triggering concept (Stein, 1999; Steacy et al., 2005), we tentatively identified a potential fault zone that is very vulnerable to future seismic events just north of the earlier epicentral area. Accordingly, we planned a local geodetic network consisting of five new GNSS (Global Navigation Satellite System) stations located a few kilometres away from both sides of the MVFS. This network was devoted to working out, at least partially but in some detail, the possible northward propagation of the crustal network ruptures. The building of the stations and a first set of measurements were carried out during a first campaign (30 September and 2 October 2016). On 26 October 2016, immediately north of the epicentral area of the 24 August event, another earthquake (Mw = 5.9) occurred, followed 4 days later (30 October) by the main shock (Mw = 6.5) of the whole 2016 summer–autumn seismic sequence. Our local geodetic network was fully affected by the new events and therefore we performed a second campaign soon after (11–13 November 2016). In this brief note, we provide the results of our geodetic measurements that registered the co-seismic and immediately post-seismic deformation of the two major October shocks, documenting in some detail the surface deformation close to the fault trace. We also compare our results with the available surface deformation field of the broader area, obtained on the basis of the DInSAR technique, and show an overall good fit.


2014 ◽  
Vol 9 (11) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Cristina Truzzi ◽  
Silvia Illuminati ◽  
Anna Annibaldi ◽  
Carolina Finale ◽  
Monica Rossetti ◽  
...  

The purpose of this study was the physicochemical characterization and classification of Italian honey from Marche Region with a chemometric approach. A total of 135 honeys of different botanical origins [acacia ( Robinia pseudoacacia L.), chestnut ( Castanea sativa), coriander ( Coriandrum sativum L.), lime ( Tilia spp.), sunflower ( Helianthus annuus L.), Metcalfa honeydew and multifloral honey] were considered. The average results of electrical conductivity (0.14 – 1.45 mS cm−1), pH (3.89 – 5.42), free acidity (10.9 – 39.0 meqNaOH kg−1), lactones (2.4 – 4.5 meqNaOH kg−1), total acidity (14.5 – 40.9 meqNaOH kg−1), proline (229–665 mg kg−1) and 5-(hydroxy-methyl)-2-furaldehyde (0.6–3.9 mg kg−1) content show wide variability among the analysed honey types, with statistically significant differences between the different honey types. Pattern recognition methods such as principal component analysis and discriminant analysis were performed in order to find a relationship between variables and types of honey and to classify honey on the basis of its physicochemical properties. The variables of electrical conductivity, acidity (free, lactones), pH and proline content exhibited higher discriminant power and provided enough information for the classification and distinction of unifloral honey types, but not for the classification of multifloral honey (100% and 85% of samples correctly classified, respectively).


2020 ◽  
Author(s):  
Andreas Wagner ◽  
Benjamin Fersch ◽  
Peng Yuan ◽  
Harald Kunstmann

<p>The assimilation of observations in local area models (LAMs) assures that the states of meteorological variables are as close to reality as possible. Water vapor is an important constituent in terms of cloud and precipitation formation. Its highly variable nature in space and time is often insufficiently represented in models.</p><p>The aim of our work is to improve the simulation of water vapour in the Weather Research and Forecasting model WRF by assimilation of different observations. At the current stage, temperature, relative humidity, and surface pressure derived from climate stations are applied as well as zenith total delay (ZTD) data from global navigation satellite system (GNSS) stations. We try to identify the best setup of assimilation parameters which all of them directly or indirectly influence water vapour simulations. We will show case studies of high-resolution WRF simulations (2.1 km) between 2016 and 2018 for different seasons in southwest Germany. The impact of assimilation (3D-VAR) of different variables, combinations of variables, background error option as well as the temporal resolution of assimilation is evaluated. We look at column values and also at profiles derived from radiosondes. Our results show a positive impact when assimilating measured data, but deteriorations are also possible. A distinct influence of assimilation is only apparent for a few time steps. If the temporal resolution of the assimilated variables is too coarse and there is no assimilation close to these time steps, the positive effect vanishes.</p>


Sign in / Sign up

Export Citation Format

Share Document