scholarly journals A Novel Distributed System of e-Vehicle Charging Stations Based on Pumps as Turbine to Support Sustainable Micromobility

2021 ◽  
Vol 13 (4) ◽  
pp. 1847
Author(s):  
Gabriella Balacco ◽  
Mario Binetti ◽  
Leonardo Caggiani ◽  
Michele Ottomanelli

Recent statistics shows that CO2 emissions from road transport have been increasing. In addition, the paradigm of “more electric vehicles” does not seem to be positive from the environmental point of view. In fact, assuming the current energy mix system, studies focusing on Life Cycle Assessment and Well-To-Wheels analysis demonstrate that electric vehicles are less eco-friendly than traditional internal combustion-based engines. Then, it is mandatory to shift toward renewable energy sources to produce electricity with less CO2 emission. In this work, it is proposed to use a new e-vehicles charging system based on Pumps used as Turbine (PATs). This system uses the pressure in excess that could be available in a water distribution network (WDN). Such an excess of pressure is usually destroyed by pressure-reducing valves with the aim to reduce water leaks. PATs are also able to reduce water pressure and produce electrical energy that can be supplied to e-vehicles charging stations. Then, a bi-level methodology to design and optimize the e-charging stations system for (individual or shared) e-bikes and/or e-scooters is proposed. The method allows determining the optimal number of e-vehicles, charging stations docks, and PATs on the study area according to the WDN layout and hydraulic properties as well as the road network characteristics and demand of e-vehicles. The potential of the methodology is shown by an application to a real case study.

2020 ◽  
Vol 12 (14) ◽  
pp. 5571
Author(s):  
Anastasia Gorbunova ◽  
Ilya Anisimov ◽  
Elena Magaril

The energy industry is a leader of introduction and development of energy supply technologies from renewable energy sources. However, there are some disadvantages of these energy systems, namely, the low density and inconsistent nature of the energy input, which leads to an increase in the cost of the produced electric energy in comparison to the traditional energy complexes using hydrocarbon fuel resources. Therefore, the smart grid technology based on preliminary calculation parameters of the energy system develops in cities. This area should also be used to organize the charging infrastructure of electric vehicles, as the electrification of road transport is one of the global trends. As a result, a current task of the transport and energy field is the development of scientifically based approaches to the formation of the urban charging infrastructure for electric vehicles. The purpose of the article is to identify the features of the application flow formation for the charge of the electric vehicle battery. The results obtained provide a basis for building a simulation model for determining the required number of charging stations in the city, taking into account the criteria of minimizing operating costs for electric vehicle owners and energy companies.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1988
Author(s):  
Ioannis E. Kosmadakis ◽  
Costas Elmasides

Electricity supply in nonelectrified areas can be covered by distributed renewable energy systems. The main disadvantage of these systems is the intermittent and often unpredictable nature of renewable energy sources. Moreover, the temporal distribution of renewable energy may not match that of energy demand. Systems that combine photovoltaic modules with electrical energy storage (EES) can eliminate the above disadvantages. However, the adoption of such solutions is often financially prohibitive. Therefore, all parameters that lead to a functionally reliable and self-sufficient power generation system should be carefully considered during the design phase of such systems. This study proposes a sizing method for off-grid electrification systems consisting of photovoltaics (PV), batteries, and a diesel generator set. The method is based on the optimal number of PV panels and battery energy capacity whilst minimizing the levelized cost of electricity (LCOE) for a period of 25 years. Validations against a synthesized load profile produced grid-independent systems backed by different accumulator technologies, with LCOEs ranging from 0.34 EUR/kWh to 0.46 EUR/kWh. The applied algorithm emphasizes a parameter of useful energy as a key output parameter for which the solar harvest is maximized in parallel with the minimization of the LCOE.


Author(s):  
Mohamad Nassereddine

AbstractRenewable energy sources are widely installed across countries. In recent years, the capacity of the installed renewable network supports large percentage of the required electrical loads. The relying on renewable energy sources to support the required electrical loads could have a catastrophic impact on the network stability under sudden change in weather conditions. Also, the recent deployment of fast charging stations for electric vehicles adds additional load burden on the electrical work. The fast charging stations require large amount of power for short period. This major increase in power load with the presence of renewable energy generation, increases the risk of power failure/outage due to overload scenarios. To mitigate the issue, the paper introduces the machine learning roles to ensure network stability and reliability always maintained. The paper contains valuable information on the data collection devises within the power network, how these data can be used to ensure system stability. The paper introduces the architect for the machine learning algorithm to monitor and manage the installed renewable energy sources and fast charging stations for optimum power grid network stability. Case study is included.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 217
Author(s):  
Amela Ajanovic ◽  
Marina Siebenhofer ◽  
Reinhard Haas

Environmental problems such as air pollution and greenhouse gas emissions are especially challenging in urban areas. Electric mobility in different forms may be a solution. While in recent years a major focus was put on private electric vehicles, e-mobility in public transport is already a very well-established and mature technology with a long history. The core objective of this paper is to analyze the economics of e-mobility in the Austrian capital of Vienna and the corresponding impact on the environment. In this paper, the historical developments, policy framework and scenarios for the future development of mobility in Vienna up to 2030 are presented. A major result shows that in an ambitious scenario for the deployment of battery electric vehicles, the total energy demand in road transport can be reduced by about 60% in 2030 compared to 2018. The major conclusion is that the policies, especially subsidies and emission-free zones will have the largest impact on the future development of private and public e-mobility in Vienna. Regarding the environmental performance, the most important is to ensure that a very high share of electricity used for electric mobility is generated from renewable energy sources.


2019 ◽  
Vol 22 (4) ◽  
pp. 681-690 ◽  
Author(s):  
A. Fiorini Morosini ◽  
O. Caruso ◽  
P. Veltri

Abstract The current paper reports on a case study investigating water distribution system management in emergency conditions when it is necessary to seal off a zone with isolation valves to allow repair. In these conditions, the pressure-driven analysis (PDA) is considered to be the most efficient approach for the analysis of a water distribution network (WDN), as it takes into account whether the head in a node is adequate to ensure service. The topics of this paper are innovative because, until now, previous approaches were based on the analysis of the network behaviour in normal conditions. In emergency conditions, it is possible to measure the reliable functioning of the system by defining an objective function (OF) that helps to choose the optimal number of additional valves in order to obtain adequate system control. The OF takes into account the new network topology by excluding the zone where the broken pipe is located. The results show that the solution did not improve significantly when the number of valves reached a threshold. The procedure applied to other real case studies seems to confirm the efficiency of the methodology even if further examination of other cases in different conditions is necessary.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 278 ◽  
Author(s):  
Stavroula Chatzivasili ◽  
Katerina Papadimitriou ◽  
Vasilis Kanakoudis

Water pressure management in a water distribution network (WDN) is a key component applied to achieve desirable water quality as well as a trouble-free operation of the network. This paper presents a hybrid, two-stage approach, to provide optimal separation of a WDN into District Metered Areas (DMAs), improving both water age and pressure. The first stage aims to divide the WDN into smaller areas via the Geometric Partitioning method, which is based on Recursive Coordinate Bisection (RCB). Subsequently, the Student’s t-mixture model (SMM) is applied to each area, providing an optimal placement of isolation valves and separating the network in DMAs. The model is evaluated on a realistic network generated through Watergems and is compared against one variation of it implemented, including the Gaussian Mixture Model (GMM) as well as the Genetic Algorithm (GA) approach, obtaining impressive performance. The implementation of both stages was deployed in a MATLAB environment through the Epanet toolkit. The proposed system is very promising, especially for large size WDNs due to the decreased running time and noteworthy reduction of pressure and water age.


2018 ◽  
Vol 9 (1) ◽  
pp. 14 ◽  
Author(s):  
Julia Krause ◽  
Stefan Ladwig ◽  
Lotte Saupp ◽  
Denis Horn ◽  
Alexander Schmidt ◽  
...  

Fast-charging infrastructure with charging time of 20–30 min can help minimizing current perceived limitations of electric vehicles, especially considering the unbalanced and incomprehensive distribution of charging options combined with a long perceived charging time. Positioned on optimal location from user and business perspective, the technology is assumed to help increasing the usage of an electric vehicle (EV). Considering the user perspectives, current and potential EV users were interviewed in two different surveys about optimal fast-charging locations depending on travel purposes and relevant location criteria. The obtained results show that customers prefer to rather charge at origins and destinations than during the trip. For longer distances, charging locations on axes with attractive points of interest are also considered as optimal. From the business model point of view, fast-charging stations at destinations are controversial. The expensive infrastructure and the therefore needed large number of charging sessions are in conflict with the comparatively time consuming stay.


2021 ◽  
Vol 12 (1) ◽  
pp. 67-77
Author(s):  
Damian Frej ◽  
Paweł Grabski ◽  
Emilia Szumska

Abstract The development of electromobility in Poland and the whole world is an inevitable process. Every year, electric vehicles and vehicles powered by renewable fuels become more and more popular. It should be noted that the development of infrastructure for electric vehicles and the pursued environmental policy with the related subsidies for the purchase of electric vehicles are an important aspect encouraging the purchase of this type of vehicle. The article presents a comparison of the popularity of vehicles powered by renewable energy sources in Poland and other European Union countries, as well as the characteristics of the most common alternative fuels. Its main objective is to specify the importance of passenger cars with alternative drive sources across the selected EU countries.


2017 ◽  
Vol 26 ◽  
pp. 91-97
Author(s):  
Lais Régis Salvino ◽  
Kamilla Henrique Mendonça ◽  
Anne Caroline Linhares Monteiro ◽  
Heber Pimentel Gomes ◽  
Saulo De Tarso Marques Bezerra

Rapid growth in population over last few decades has resulted in changes of supply system consumption patterns. Such, require effort from companies in technical aspects; targeting need of strategies to improve operational efficiency. Management system, based on automated control, carries a strong mechanism to gauge these results. Aim of this paper is to present a comparative study of both hydraulic and electric parameters of an experimental automated network. Network behavior was analyzed under two conditions: without use of controller and with Proportional-Integral -Derivative (PID) controller. Results indicated efficiency of applied controller in different consumption scenarios. Dealing with energy efficiency, it was verified that, according to calculations related to specific energy consumption (SEC), reduction on electrical energy is notable with use of controller.


Sign in / Sign up

Export Citation Format

Share Document