scholarly journals Microstructure of Structural Lightweight Concrete Incorporating Coconut Shell as a Partial Replacement of Brick Aggregate and Its Influence on Compressive Strength

2021 ◽  
Vol 13 (13) ◽  
pp. 7157
Author(s):  
Hamidul Bari ◽  
Md. Safiuddin ◽  
Md. Abdus Salam

In this study, coconut shell aggregate (CSA) was used in brick aggregate concrete (BAC) to produce structural lightweight concrete. Various BACs containing CSA (CSBACs) were prepared based on the volumetric mix ratio of 1:1.5:3 (cement:fine aggregate:coarse aggregate). CSA was used substituting 0−15% of brick aggregate (BA) by weight. The concrete mixes were designed based on the weight-based water to cement (w/c) ratios of 0.45, 0.50, and 0.55. All the freshly mixed concretes were tested for their workability with respect to slump. In addition, the freshly mixed concretes made with the w/c ratio of 0.50 were examined for their wet density and air content. The hardened concretes were tested for their dry density, compressive strength, and microstructural characteristics (e.g., microcrack, micropore, fissure). The microstructure of CSBACs was investigated by a scanning electron microscope (SEM). In addition, the fissure width between the cement paste and CSA was measured from the SEM images using “ImageJ” software. The correlation between the compressive strength and fissure width of CSBAC was also examined. Test results showed that the air content of CSBACs including 5–15% CSA was higher than that of the control concrete (0% CSA). In addition, the density and compressive strength of concrete decreased with the increased CSA content. Above all, the most interesting finding of this study was the presence of fissures in the interfacial transition zone between the cement paste and CSA of CSBAC. The fissure width gradually increased with the increase in CSA content and thus decreased the compressive strength of concrete. However, the fissure width decreased with the increased curing age of concrete and therefore the compressive strength of CSBAC was enhanced at later ages. Moreover, a good correlation between the compressive strength and fissure width of CSBAC was observed in this study.

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6057-6073
Author(s):  
Mei Yun Chin ◽  
Md. Rezaur Rahman ◽  
Kuok King Kuok ◽  
Wai Yun Chiew ◽  
Muhammad Khusairy Bin Bakri

Partial replacement with coconut shell coarse aggregates was studied as a means to produce lightweight coconut shell concrete (CSC). Coconut shell concrete is a structural grade lightweight concrete that has a lower self-load compared to the normal weight concrete (NWC), which allowed the production of larger precast units. An experimental study and analysis were conducted using different volume percentages of 0%, 10%, 30%, 50%, and 70% of coconut shell as coarse aggregates, to produce M30 (30 MPa) grade concrete. The compressive strength of the NWC and CSC were obtained on the 7th and 28th day. The optimum results obtained for M30 grade concrete at 7th and 28th day of CSC were 34.2 and 38.6 MPa, respectively. In addition, the workability and weight-reduction were analyzed and compared with NWC. Scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS/EDX) and Fourier transform infrared spectroscopy (FTIR) were also used to investigate the structural morphology, chemical composition, and infrared functional groups of the concrete.


2020 ◽  
Vol 2 (1) ◽  
pp. 31-57
Author(s):  
Ni Ketut Sri Astati Sukawati

Concrete with various variants is a basic requirement in building a building. The concrete mixture is diverse depending on the planning made beforehand. The cement mixture is usually in the form of a mixture of artificial stone, cement, water and fine aggregates and coarse aggregates. Aggregates (fine aggregates and coarse aggregates) function as fillers in concrete mixtures. (Subakti, A., 1994). However, in building construction, additives are often added, but there is still a sense of uncertainty at the time of dismantling the mold and the reference before the concrete reaches sufficient strength to carry its own weight and the carrying loads acting on it. To overcome the time of carrying out work related to concrete, it is necessary to find an alternative solution, for example by looking for alternative ingredients of concrete mixture on the basis of consideration without reducing the quality of the concrete. From the results of previous studies it was stated that due to the partial replacement of cement with Fly Ash, the strength of the pressure and tensile strength of the concrete had increased (Budhi Saputro, A., 2008). Based on the description above, the author seeks to examine how the compressive strength of concrete characteristics that occur by adding additives Addition H.E in the concrete mixture and is there any additive Additon H.E effect on the increase in the compressive strength characteristic of the concrete. From the results of the study, it was found that the compressive strength of the concrete with the addition of additives HE was that after the compressive strength test of the concrete cube was carried out and the analysis of concrete compressive strength of 10 specimens, in each experiment a cube specimen was made with the addition of additons. HE with a dose of 80 cc, 120 cc, and 200 cc can accelerate and increase the compressive strength of concrete characteristics.


Author(s):  
Shahid Bashir

Abstract: Cement production is one of the sources that emit carbon dioxide, in addition to deforestation and combustion of fossil fuels also leads to ill effects on environment. The global cement industry accounts for 7% of earth’s greenhouse gas emission. To enhance the environmental effects associated with cement manufacturing and to constantly deplore natural resources, we need to develop other binders to make the concrete industry sustainable. This work offers the option to use waste paper sludge ash as a partial replacement of cement for new concrete. In this study cement in partially replaced as 5%, 10%, 15% and 20% by waste paper sludge ash in concrete for M25 mix and tested for compressive strength, tensile strength, water absorption and dry density up to the age of 28days and compared it with conventional concrete, based on the results obtained, it is found that waste paper ash may be used as a cement replacement up to 5% by weight and the particle size is less the 90µm to prevent reduction in workability. Keywords: slump test, Compressive strength, split tensile strength, water absorption test, Waste Paper Sludge Ash Concrete, Workability.


The investigative studies on mechanical performance & behaviour, of Geopolymer Concrete (GPC) before and after the exposure to elevated temperatures (of 200 0 C -1000 0 C with an increment of 100 0 C). Indicate that the GPC Specimens Exhibited better Compressive strength at higher temperatures than that of those made by regular OPC Concrete with M30 Grade. The chronological changes in the geopolymeric structure upon exposure to these temperatures and their reflections on the thermal behaviour have also been explored. The SEM images indicate GPC produced by fly ash , metakaolin and silica fume, under alkaline conditions form Mineral binders that are not only non-flammable and but are also non-combustible resins and binders. Further the Observations drawn disclose that the mass and compressive strength of concrete gets reduced with increase in temperatures.


2021 ◽  
Vol 15 (1) ◽  
pp. 370-380
Author(s):  
David Sinkhonde ◽  
Richard Ocharo Onchiri ◽  
Walter Odhiambo Oyawa ◽  
John Nyiro Mwero

Background: Investigations on the use of waste clay brick powder in concrete have been extensively conducted, but the analysis of waste clay brick powder effects on cement paste is limited. Materials and Methods: This paper discusses the effects of waste clay brick powder on cement paste. Fragmented clay bricks were grounded in the laboratory using a ball mill and incorporated into cementitious mixes as partial replacement of Ordinary Portland Cement. Workability, consistency, setting time, density and compressive strength properties of paste mixes were investigated to better understand the impact of waste clay brick powder on the cementitious paste. Four cement replacement levels of 2.5%, 5%, 7.5% and 10% were evaluated in comparison with the control paste. The chemical and mineral compositions were evaluated using X-Ray Fluorescence and X-Ray Diffractometer, respectively. The morphology of cement and waste clay brick powder was examined using a scanning electron microscope. Results: The investigation of workability exhibited a reduction of slump attributed to the significant addition of waste clay brick powder into the cementitious mixes, and it was concluded that waste clay brick powder did not significantly influence the density of the mixes. In comparison with the control paste, increased values of consistency and setting time of cement paste containing waste clay brick powder confirmed the information available in the literature. Conclusion: Although waste clay brick powder decreased the compressive strength of cement paste, 5% partial cement replacement with waste clay brick powder was established as an optimum percentage for specimens containing waste clay brick powder following curing periods of 7 and 28 days. Findings of chemical composition, mineral composition and scanning electron microscopy of waste clay brick powder demonstrated that when finely ground, fragmented clay bricks can be used in concrete as a pozzolanic material.


2019 ◽  
Vol 967 ◽  
pp. 205-213
Author(s):  
Faiz U.A. Shaikh ◽  
Anwar Hosan

This paper presents the effect of nanosilica (NS) on compressive strength and microstructure of cement paste containing high volume slag and high volume slag-fly ash blend as partial replacement of ordinary Portland cement (OPC). Results show that high volume slag (HVS) cement paste containing 60% slag exhibited about 4% higher compressive strength than control cement paste, while the HVS cement paste containing 70% slag maintained the similar compressive strength to control cement paste. However, about 9% and 37% reduction in compressive strength in HVS cement pastes is observed due to use of 80% and 90% slag, respectively. The high volume slag-fly ash (HVSFA) cement pastes containing total slag and fly ash content of 60% exhibited about 5%-16% higher compressive strength than control cement paste. However, significant reduction in compressive strength is observed in higher slag-fly ash blends with increasing in fly ash contents. Results also show that the addition of 1-4% NS improves the compressive strength of HVS cement paste containing 70% slag by about 9-24%. However, at higher slag contents of 80% and 90% this improvement is even higher e.g. 11-29% and 17-41%, respectively. The NS addition also improves the compressive strength by about 1-59% and 5-21% in high volume slag-fly ash cement pastes containing 21% fly ash+49%slag and 24% fly ash+56%slag, respectively. The thermogravimetric analysis (TGA) results confirm the reduction of calcium hydroxide (CH) in HVS/HVSFA pastes containing NS indicating the formation of additional calcium silicate hydrate (CSH) gels in the system. By combining slag, fly ash and NS in high volumes e.g. 70-80%, the carbon footprint of cement paste is reduced by 66-76% while maintains the similar compressive strength of control cement paste. Keywords: high volume slag, nanosilica, compressive strength, TGA, high volume slag-fly ash blend, CO2 emission.


2012 ◽  
Vol 204-208 ◽  
pp. 3970-3973
Author(s):  
Reagan J. Case ◽  
Kai Duan ◽  
Thuraichamy G. Suntharavadivel

As a part of a large research program aiming at the cementitious materials containing recycled materials at Central Queensland University – Australia, the current paper presents the preliminary results of a study on the effects of fly ash, which is used to replace cement in concrete, on the concrete compressive strength. For this purpose, systematic experiments have been carried out to investigate the influences of fly ash ratio and age. The compressive strength of concrete specimens with replacement ratios of 15%, 30% and 45%, and aged 7 and 28 days are measured and are compared with those of the concrete specimens without fly ash at the same ages. The results demonstrate that the strength of fly ash containing concrete improves more slowly but more strongly with aging, than their fly ash free counterparts, and an optimum fly ash replacement ratio exists where the maximum compressive strength of fly ash containing concrete can be achieved, and the maximum strength for the specimens aged 28 days and above is higher that of fly ash free concrete. Furthermore, the observation strength behaviours are analysed and discussed in terms of the influences of fly ash on interface reactions and interface bonding strength.


2019 ◽  
Vol 262 ◽  
pp. 06002 ◽  
Author(s):  
Magdalena Dobiszewska ◽  
Waldemar Pichór ◽  
Paulina Szołdra

The study evaluates the use of waste basalt powder as a replacement of cement to enhance hydration of cement and mortar properties. The basalt powder is a waste resulting from preparation of aggregate used in asphalt mixture production. Previous studies have shown that analysed waste used as a fine aggregate replacement has a beneficial effect on some properties of mortar and concrete, i.e. compressive strength, flexural strength and freeze resistance. The present study shows the results of the research concerning the modification of cement paste and mortar with basalt powder. The modification consists in adding the powder waste as a partial replacement of cement. The percentages of basalt powder in this research are 0-40% and 0-20% by mass of cement in the pastes and mortars respectively. The experiments were carried out to determine the influence of basalt powder on cement hydration, as well as compressive and flexural strength. Results indicate that addition of basalt powder as a replacement of cement leads to deterioration of compressive strength. The flexural strength of mortar is improved in some cases. Waste basalt powder only slightly influences the cement hydration.


Sign in / Sign up

Export Citation Format

Share Document