scholarly journals Industrial Waste Materials as Alternative Fillers in Asphalt Mixtures

2021 ◽  
Vol 13 (14) ◽  
pp. 8068
Author(s):  
Catalina Dimulescu ◽  
Adrian Burlacu

One important role in asphalt mixture performances is represented by the filler content and characteristics. This research aims to assess the potential usage of industrial waste powders as replacers of the standard limestone filler in asphalt mixture composition. First of all, an SEM and EDX analysis was carried out to figure whether this industrial waste can be used in asphalt mixture composition by comparing the results of the industrial wastes with the properties of the standard filler. After a chemical evaluation, laboratory investigations were carried out to characterize the materials in terms of geometrical and physical properties. The research study involved sixteen dosages of limestone filler with four different types of industrial waste powders in different percentages used. The results obtained from laboratory testing suggested that the inclusion of industrial wastes in the manufacture of asphaltic mixtures may have benefits for the construction industry, the waste management sector, and also for the environment.

2019 ◽  
Vol 8 (2) ◽  
pp. 1-15
Author(s):  
Lixandru Cătălina Georgiana ◽  
Dicu Mihai ◽  
Andrei Bogdan

Abstract This paper evaluates the possibility of using artificial aggregates from blast furnace slag, considered industrial waste, which can replace, in a certain dosage, the natural aggregates in the composition of an AB 22,4 asphalt mixture. Furthermore, it is presented the possibility to replace the usual filler with powders from industrial wastes such as the desulphurization waste, generated by the combustion of the energetic coal. Laboratory studies and researches are carried out according to prescribed techniques. For this purpose, for the evaluation of the performance of the asphalt mixture recipes will be evaluated by static and dynamic tests as described in AND 605: 2016. The results of this study show the possibility of using asphalt mixtures with different dosages of industrial wastes in composition. The results obtained from the laboratory tests have shown that materials from industrial waste can be used in the design of asphalt mixtures with the purpose of replacing natural materials, used in certain dosages, which demonstrates good behavior in interaction with the usual bituminous binder.


2015 ◽  
Vol 73 (4) ◽  
Author(s):  
Ekarizan Shaffie ◽  
Juraidah Ahmad ◽  
Ahmad Kamil Arshad ◽  
Dzraini Kamarun

This paper presents the potential benefits of nanopolyacrylate (NPA) for the asphalt mixtures used on pavement. This research evaluates the resilient modulus performance of dense graded Superpave-designed HMA mix. Two different types of dense graded Superpave HMA mix were developed consists of unmodified bitumen mix (UMB) and nanopolyacrylate modified bitumen mix (NPMB). Nanopolyacrylate polymer modified bitumen was prepared from addition of 6 percent of NPA polymer into asphalt bitumen. Resilient modulus results from Resilient Modulus test were determined to evaluate the performance of these mixtures. Results showed that all the mixes passed the Superpave volumetric properties criteria which indicated that these mixtures were good with respect to durability and flexibility. The Resilient modulus result of NPMB demonstrates better resistance to rutting than those prepared using UMB mix. It was estimated that the average resilient modulus values for both UMB and NPMB mixtures are decreased by 80 percent when the test temperature increased from 25ºC to 40ºC.   In conclusion, the addition of NPA to the binder has certainly improved the bitumen properties significantly and hence increase the resistant to rutting of the asphalt mixture.


2015 ◽  
Vol 752-753 ◽  
pp. 194-198 ◽  
Author(s):  
E. Shaffie ◽  
J. Ahmad ◽  
D. Kamarun

Rutting is a common pavement failure in road pavement. Rutting occurs mainly due to several factors including increasing of vehicles numbers, environmental conditions and also due to construction and design errors. As a consequence the service life of asphalt pavement is affected and will be decreased. Various researches reported that using different types of polymers in bitumen modification could be a solution to delay deterioration of asphalt pavement. The main purpose of the study was to investigate the effect of the NPA polymer modifier on the rutting behaviour of the asphalt mixtures through Superpave designed mixtures. . Two different types of dense graded Superpave HMA mix were developed consists of Control mix and nanopolyacrylate (NPA) mix. Results showed that all the mixes passed the Superpave volumetric properties criteria which indicate that these mixtures were good with respect to durability and flexibility. Furthermore there is a significant difference between Control mix and NPA mix in terms of rutting in which rut depth after 8000 passes for Control mix was 5.94 mm while for NPA mix was 2.98 mm. The results of this investigation indicated that the Rutting test result of NPA demonstrates 3% better resistance to rutting than those prepared using Control mix. This is due to the addition of NPA to the bitumen has certainly improved the bitumen properties significantly and hence increase the resistant to rutting of the asphalt mixture. Therefore, it can be concluded that NPA polymer is feasible to be used as asphalt modifier and has potential for improvement in the field of pavement material and construction in future.


Expansive soil deposits mostly appear in arid and semi-arid areas of the world and they pose severe difficulties to engineering constructions as they possess higher tendency to heave in the course of moist season and shrink at summer season. Construction in such highly expansive strata can be done by adopting ground modification techniques like soil stabilization, Vertical drains, inducing reinforcement in to soil etc., On the other hand with rapid industrial growth more quantity of industrial waste will be generated which will trigger several environmental issues when it is dumped in to environment. Utilization of industrial waste in construction industry without compromising in strength criteria is the best possible option for the engineers as the waste is used as construction material there will be no need for dumping yards, biodiversities can be protected, strength properties of the soil can be enhanced and hydraulic properties can also be modified by treating soil with industrial wastes. As the river sand can be partially replaced by some of the industrial wastes requirement for natural sand can be reduced which will not only economise the construction cost but also preserves the natural resources. The present study was carried out to assess the behaviour of coir pith treated black cotton soils. Due to increase in the natural fibres in many industries the waste produced from the coir industry is increasing, if proper care is not taken these waste may create severe effects on environment .To avoid disposal of this waste directly into environment it is better to use the waste in construction industry is a better option. But before adopting such practices proper studies are to be done to check whether these materials are suitable for treating the soils are not .In the present study by adding various proportions of coir pith Swell, strength characteristics of soil where compared for obtaining the optimum Replacement percentage


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Katarina Mirković ◽  
Nikola Tošić ◽  
Goran Mladenović

In order to preserve natural resources, the use of waste and alternative materials in the construction and maintenance of roads is increasingly investigated. This paper presents the results of testing wearing course asphalt mixtures (AC 11s SURF 50/70) made with various percentages of fly ash, used as a partial or complete substitute for mineral filler. The properties of fly ash were determined to assess their suitability for use in asphalt mixtures. The experimental research was performed on asphalt samples containing fly ash from three different sources, with 25%, 50%, 75%, and 100% of mineral filler substitution. The control mixture was prepared with 100% of mineral filler. The paper presents the volumetric composition, stability, and flow of asphalt mixtures tested on standard Marshall’s samples, water sensitivity, and resistance to permanent deformation. The results of this study indicate that a satisfactory volumetric composition can be achieved by adding fly ash, while the bulk density and voids of the mineral and asphalt mixture generally depend on the type of fly ash and its content. The stability and flow of mixtures with fly ash are favourable compared with the control mixture. The water sensitivity of mixtures with fly ash is generally lower compared with the control mixture and depends on the type and percentage of fly ash. The resistance to permanent deformation of the asphalt mixtures depends on the fly ash type and percentage. The results obtained in this study are an important step towards broader implementation of fly ash in asphalt mixtures.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1262
Author(s):  
Krit Mongkol ◽  
Preeda Chaturabong ◽  
Arnonporn Suwannaplai

Workability is of importance during asphalt construction, which plays a role in increasing stability and other performances. Using different mineral fillers can result in different asphalt workability in the same mix design. While fillers can increase stability, viscosity with regards to asphalt mastic needs to be considered for working in the field. Nowadays, waste natural materials can allow agriculturists to get more income by recycling in many industries. In this study, the objective is to determine the effect of using bagasse and coconut peat as filler on mastic viscosity and the resistance to failure performances. Findings show that the viscosities of asphalt mastic with coconut peat and bagasse fillers are relatively similar to those with limestone filler for all temperatures at 20 percent filler content. Additionally, the stabilities and flows of asphalt mixtures mixed with waste natural fillers were close to those mixed with mineral fillers at equivalent temperatures. In conclusion, the mastic viscosity is vital for determining the workability of asphalt mixture. The waste natural fillers including bagasse and coconut peat give similar mastic viscosity to limestone filler and higher than granite filler, which shows less difference to performance results.


2019 ◽  
Vol 11 (10) ◽  
pp. 2938 ◽  
Author(s):  
Rita Kleizienė ◽  
Ovidijus Šernas ◽  
Audrius Vaitkus ◽  
Rūta Simanavičienė

Low-noise pavements are used as an effective method of traffic noise mitigation. Low-noise pavements reduce the noise that arises due to interactions between tires and road surfaces (tire/road) via the implementation of three main components: low pavement roughness, negative pavement texture, and a high pavement air-void content. The tire/road noise reduction capabilities of the wearing layer vary depending on the aggregate type, gradation, bitumen and air-void content, and density. Consequently, the demand for an accurate tire/road noise prediction model has arisen from the design of asphalt mixtures. This paper deals with how asphalt mixture components of the wearing layer influence tire/pavement noise reduction and presents a model for tire/road noise level prediction based on the asphalt mixture composition. The paper demonstrates that the noise reduction level of low-noise asphalt pavements is dependent on the composition of the asphalt mixture. Asphalt wearing layer mixture composition parameters were tested in the laboratory from cores taken from 18 road sections, where acoustic properties were measured using a close-proximity (CPX) method. The proposed linear model is based on the bitumen amount, the air-void content of the mixture and aggregate shape and involves materials that comply with the general requirements for high-quality asphalt mixtures. The model allows for the prediction of the tire/road noise level at the asphalt mixture design stage using asphalt mixture components and volumetric properties. The proposed model is the first stage in the building of a complex model with a much wider range of low-noise asphalts components, pavement profile depth and CPX-value relationships.


2021 ◽  
Vol 13 (17) ◽  
pp. 9718
Author(s):  
Amin Chegenizadeh ◽  
Pak Jing Shen ◽  
Indah Sekar Arumdani ◽  
Mochamad Arief Budihardjo ◽  
Hamid Nikraz

Bitumen is subjected to cracks and damage during its service life. Adding a material with the potential to increase the durability of bitumen can expand its service life and reduce maintenance costs. Previous studies indicate that adding crumb rubber into asphalt has a positive effect on the performance of the mixture. Using crumb rubber may solve environmental problems due to vehicle tire waste disposal by reducing maintenance costs needed to increase asphalt’s strength. Some studies have investigated the effect of bitumen mixed with crumb rubber; however, it seems that the effect of different types of rubber mixtures used has been overlooked. Therefore, this study aims to better understand the effects of the increasing amount of rubber addition in various types of asphalt mixtures and determine the optimal mixture that could be used in road construction. A series of experiment was conducted, incorporating various tests (such as Marshall stability, rutting, and fatigue), to test various mixtures of asphalt in the form of dense-graded asphalt (DGA), fine gap-graded asphalt (FGG), gap-graded asphalt (Stone Mastic Asphalt, SMA), and open-graded asphalt. The amount of added crumb rubber was 25% by weight of bitumen. All mixtures were classified as superior in rutting and fatigue resistance, since they all reached a maximum depth of rutting less than 15 mm and generated two times more failure cycles compared to the conventional asphalt. The most optimal performance asphalt mixture was showed by the SMA10 mixture, resulting in a minimum rut depth of less than 1.2 mm and producing 750% more fatigue cycles than conventional asphalt. The result indicates that the addition of 25% of the rubber particles in the binder can increase the properties and durability of asphalt mixtures.


Author(s):  
Farzaneh Tahmoorian ◽  
John Yeaman

The growing quantities of waste materials, lack of natural resources and shortage of landfill spaces represent the importance of finding innovative ways of reusing and recycling waste materials. Due to the large quantities of construction and demolition waste (CDW), recycling and utilization of Recycled Construction Aggregates (RCA) obtained from CDW in construction projects, including asphalt pavement construction, can be the most promising solution to this problem. Asphalt mixtures containing RCA have the problem of high bitumen absorption. Using plastic waste in RCA-contained asphalt mixtures reduces not only bitumen absorption but also the adverse environmental impacts associated with plastic waste disposal due to the nonbiodegradability of plastic waste. In addition, the demand reduction for virgin aggregates is another advantage resulting in subsequent economic advantages. This paper characterizes the effects of different types of plastic on the bitumen absorption and properties of asphalt mixtures containing RCA through laboratory investigation. Different types of plastic including High-Density Polyethylene (HDPE) and LowDensity Polyethylene (LDPE) were investigated in this research. The test results indicate that the plastic waste can be a viable material for improving the problem of high bitumen absorption of asphalt mixtures containing RCA.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4034 ◽  
Author(s):  
Dezhi Kong ◽  
Shaopeng Wu ◽  
Meizhu Chen ◽  
Meiling Zhao ◽  
Benan Shu

The fillers of ordinary and pyrolytic basic oxygen furnace (BOF) slag were selected to investigate the properties of their asphalt mastic. XRF (X-Ray Fluorescence) was used to analyze chemical composition of fillers. Meanwhile, SEM (Scanning Electron Microscope) and AIMS (Aggregate Image Measurement System) were utilized to explore meso-morphology, angularity and sphericity. Penetration, softening point and viscosity of asphalt mastic were discussed, while the rheological properties of asphalt mastic were studied by means of DSR (dynamic shear rheometer) and BBR (bending beam rheometer) tests. The experimental results show that chemical composition of different types of BOF slag is similar. The grinding energy consumption of pyrolytic BOF slag is higher than that of limestone and ordinary BOF slag. It is not recommended that pyrolytic BOF slag filler is produced by grinding process. The micro-texture structure of ordinary BOF slag filler is more abundant and their angularity index is about 15% higher than that of limestone filler. The stiffness modulus and rutting factor of asphalt mastic with ordinary BOF slag filler is higher than that of limestone filler. Meanwhile the incorporation of BOF slag filler will further reduce the low-temperature flow performance of asphalt mastic. The effect of pyrolytic BOF slag filler on the performance of asphalt mastic is less than that of ordinary BOF slag. Ordinary BOF slag filler can effectively improve high temperature anti-rutting stability of asphalt mixture. Ordinary BOF slag has a useful application prospect as filler in asphalt mixture.


Sign in / Sign up

Export Citation Format

Share Document