scholarly journals A Cost-Effective and Efficient Electronic Design for Photovoltaic Systems for Solar Hot Water Production

2021 ◽  
Vol 13 (18) ◽  
pp. 10270
Author(s):  
Luis Cámara-Díaz ◽  
José Ramírez-Faz ◽  
Rafael López-Luque ◽  
Francisco José Casares

A significant percentage of energy consumption in buildings is to produce hot water. Photovoltaic solar heating can be considered a clean and renewable energy option—easy to install, silent, and without maintenance—to replace the consumption of fossil fuels used in this process. This paper presents a study that simulates the heating process using thermal electrical resistors powered by photovoltaic solar energy. For this purpose, a solar hot water installation has been set up. This installation consists of a water tank with an electric resistance connected to photovoltaic modules by means of a low-cost experimental electronic conversion system. This electronic system has been developed to avoid the need for inverters or batteries, typical of traditional photovoltaic solar installations. It is an isolated system since it is not connected to the power grid. The photovoltaic solar modules, the tank, and its heating resistance correspond to commercial models. This electronic system has a 95.06% yield, and it operates across the whole irradiance’s daily curve, having verified its operation over several months. Even though this is an experimental electronic device, it is financially viable as the cost of its components is below EUR 60 per kW peak capacity. The results obtained in a proper functioning system are promising, demonstrating the technical feasibility and economic advantages of using this type of isolated photovoltaic system to power heating processes.

2018 ◽  
Vol 7 (4.24) ◽  
pp. 455
Author(s):  
Gujjala Trilokya ◽  
M.Rama sekhara Reddy

The advanced reactive power regulation is planned to direct the highest and the voltages at least point of regular pairing inside the cutoff points set up in grid codes for consistent operation. These work displays a regulating technique to which the grid associated PV system meaning to direct the  power of both active and reactive infused to the electrical system amid the voltage faults that are uneven in nature. Fuzzy controller is propel controller which is for the most part appropriate for the personal fundamental guidance tool. which additionally gave the electronic system operation by the master choice. The reference of active power  is acquired from a Maximum Power Point Tracking (MPPT) calculation. The advanced force methodology creates the necessary reference currents that forced by the grid-tied inverter from the coveted P and Q powers and the deliberate voltage supply. In unequal voltage sags, positive and negative sequence KVAr are consolidated to adaptable boost and even out the phase voltages; maximum phase voltage is controlled below as far as possible and the base phase voltage simply over as far as possible. The plan is approved to a solitary step PV system where the currents that are  regulated by means of prescient control. By using the fuzzy controller for a nonlinear system which permit the decrease for the questionable impact in the system which control and impeccably enhance the effectiveness. Results demonstrating the execution of the procedure are introduced amid uneven  sags and swells.


Author(s):  
Ibrahim Abba ◽  
◽  
Salisu Muhammad ◽  
Lawan Bashir D. Bala ◽  
Emmanuel Joseph ◽  
...  

Lack of equipment to study mobile satellites signal propagation in colleges and universities prone this research work. A Handheld GPS receiver used as a tool for training college students to learn mobile satellite signal propagation using Global Positioning System (GPS) approach. These refer to the experimental setup of the equipment that is the connection done between the GPS receiver with a computer. The satellite propagation data received from the GPS machine can be recorded continuously with an updates rate of 2 seconds. The experiment was carried out in an open space environment at predetermine locations using simple setup, where a cheap, readily and available portable GPS receiver were connected to the computer to acquire propagation data. The computer was equipped with a self-developed package graphical user interface (GUI) monitoring the propagation information from the GPS satellites and saving the data. The developed system can be set up anywhere at any location. The sate-up will serve as a database for satellites view and analysis of mobile satellite data orbiting the sky of Northern part of Nigeria. Cost effective referring to a low-cost and readily available GPS receiver that can be easily set-up as compared to equipment designed specifically for an experimental purpose that is normally very expensive.


2019 ◽  
Vol 5 (1) ◽  
pp. 297-301
Author(s):  
Valerie M. K. Werner ◽  
Daniel Strömsdörfer ◽  
Viet Nga Bui ◽  
Niklas von Wittenburg ◽  
Markus Eblenkamp

AbstractThe design of Smart Biomedical Devices will be a defining element of future research in the context of intelligent medical devices for the Internet of Medical Things (IoMT). A prerequisite for serving the disposable market is the use of cost-effective electronic components and the highest reliability of the developed products in terms of biocompatibility and bioprotection. In the study, resistors, capacitors, and light-emitting diodes, different in their materials and construction forms, were examined. The selected types represented electronic components as they are commonly installed on electronic system from the segment of low-cost standard components. These were subjected to steam sterilization with up to 50 cycles, gamma sterilization, and a CCK-8 assay to test in vitro cytotoxicity. Functional failure could not be determined for any component. Gamma sterilization did not result in significant changes in resistance values, but in capacitors with barium titanate as dielectric. Non-cytotoxic electronic components could be identified. The results show that certain electronic standard components are suitable for disposable Smart Biomedical Devices.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Ibrahim Allafi ◽  
Tariq Iqbal

SCADA (supervisory control and data acquisition) systems are currently employed in many applications, such as home automation, greenhouse automation, and hybrid power systems. Commercial SCADA systems are costly to set up and maintain; therefore those are not used for small renewable energy systems. This paper demonstrates applying Reliance SCADA and Arduino Uno on a small photovoltaic (PV) power system to monitor the PV current, voltage, and battery, as well as efficiency. The designed system uses low-cost sensors, an Arduino Uno microcontroller, and free Reliance SCADA software. The Arduino Uno microcontroller collects data from sensors and communicates with a computer through a USB cable. Uno has been programmed to transmit data to Reliance SCADA on PC. In addition, Modbus library has been uploaded on Arduino to allow communication between the Arduino and our SCADA system by using MODBUS RTU protocol. The results of the experiments demonstrate that SCADA works in real time and can be effectively used in monitoring a solar energy system.


Author(s):  
Jeisell Marisol Cabrera-Chairez ◽  
Néstor Manuel Ortíz-Rodríguez ◽  
Rodrigo Cervando Villegas-Martínez ◽  
Juan Manuel García-González

One of the current problems is the use of energy obtained from fossil fuels, especially due to the emission of greenhouse gases. An option to replace fossil fuels is the use of alternative energies such as solar or wind energy. The objective of this work is to carry out a thermal and energy analysis of an indirect air heating system that receives energy through solar collectors that operate with water as the thermal fluid used in a food dehydration system, in order to know the efficiency of the system and therefore, make improvements to the circuit, in addition to the characterization of the water storage tank of the system, obtain the amount of energy that can be provided and the behavior of temperatures at different operating flows. According to the methodology, the temperature profile was obtained inside the hot water tank in two modes of operation (heating and energy extraction) reaching temperatures of 50 to 70 ° C, where the optimum temperature for drying is found and in turn reaching an efficiency 84%, compared to a conventional drying system that uses LP gas.


2022 ◽  
Vol 12 (1) ◽  
pp. 0-0

Security along the international border is a critical process in security assessment; It must be exercised the 24x7. With the advancements in wireless IoT technology, it has become much easier to design, develop and deploy a cost-effective, automatic and efficient system for intrusion detection in the context of surveillance. This paper set up to set up the most efficient surveillance solution, we propose a Border Surveillance Systems and sensitive sites. this surveillance and security system is to detect and track intruders trespassing into the monitoring area along the border, it able which triggers off precocious alerts and valuation necessary for the catch of efficient measurements in case of a threat. Our system is based on the classification of the human gestures drawn from videos envoy by Drones equipped with cameras and sensors in real-time. All accomplished experimentation and acquired results showed the benefit diverted from the use of our system and therefore it enables our soldiers to watch the borders at each and every moment to effectively and at low cost.


2021 ◽  
Vol 7 (2) ◽  
pp. 550-553
Author(s):  
Benjamin K. Naggay ◽  
Kerstin Frey ◽  
Markus Schneider ◽  
Kiriaki Athanasopulu ◽  
Günter Lorenz ◽  
...  

Abstract Soft lithography, a tool widely applied in biology and life sciences with numerous applications, uses the soft molding of photolithography-generated master structures by polymers. The central part of a photolithography set-up is a mask-aligner mostly based on a high-pressure mercury lamp as an ultraviolet (UV) light source. This type of light source requires a high level of maintenance and shows a decreasing intensity over its lifetime, influencing the lithography outcome. In this paper, we present a low-cost, bench-top photolithography tool based on ninety-eight 375 nm light-emitting diodes (LEDs). With approx. 10 W, our presented lithography set-up requires only a fraction of the energy of a conventional lamp, the LEDs have a guaranteed lifetime of 1000 h, which becomes noticeable by at least 2.5 to 15 times more exposure cycles compared to a standard light source and with costs less than 850 C it is very affordable. Such a set-up is not only attractive to small academic and industrial fabrication facilities who want to enable work with the technology of photolithography and cannot afford a conventional set-up, but also microfluidic teaching laboratories and microfluidic research and development laboratories, in general, could benefit from this cost-effective alternative. With our self-built photolithography system, we were able to produce structures from 6 μm to 50 μm in height and 10 μm to 200 μm in width. As an optional feature, we present a scaled-down laminar flow hood to enable a dust-free working environment for the photolithography process.


2020 ◽  
Vol 17 (12) ◽  
pp. 5250-5255
Author(s):  
Pasam Prudvi Kiran ◽  
E. Laxmi Lydia

The way the COVID-19 circumstance has been advancing is very disturbing over the globe and apparently this battle will be a prolonged one. At least, till the mission for vaccination succeeds, we should figure out how to live safely alongside the infection. Along with all the safety measures we have recently incorporated into our daily lives, the provision of continuous availability of water in a water tank at households, schools, marketplaces, health care facilities, and all other public gathering places is essential for right time self-sanitation and for maintaining hygienic surroundings, which ensures protection from this pandemic. In this work, at first, we explore the important role of continuous water availability in this pandemic lifestyle. Secondly, we provide a brief survey of existing works which are closely related to proposed problem and thirdly, we have prepared an improved model overcoming the maximum limitations of surveyed models and also adding new feature of thought provoking GUI and applied it to a practical case study to demonstrate its need and effectiveness. Proposed model can be adopted immediately in a cost-effective manner, with applicability ranging from 1000 Litre plastic water tank serving a normal house hold to 1000000 Litre overhead water tank serving a small village or a big industry, promoting the continuous availability of water.


2014 ◽  
Vol 541-542 ◽  
pp. 954-960
Author(s):  
Shun Mei Li ◽  
Jun Mei ◽  
Yong Yao

Basing on the meteorological data of Panzhihua, such as monthly solar radiation, sunshine duration, sunshine percentage, sunny days, and transmission coefficient, etc, we analyzed the distribution and application potential of solar energy resource . The result is as follows:(1) there are obvious seasonal characteristic for solar energy resource;(2) the solar water heater can meet the requirements of the standard domestic hot water the whole year;(3)it’s necessary to pay attention to usage and control for the sunshade and the day-lighting technology, where the east and west window should be avoided in the architectural design, and the south window with movable level external shading should be set up; (4)the photovoltaic system in the building which can reduce converted units exhaust emissions of 14.20 kg/ WP, produce the environmental benefits of about 1.72¥/ WP, and bring good environmental benefits.


2020 ◽  
Author(s):  
Ebrahim Sadeghi ◽  
Naeimeh Peighambardoust ◽  
Masoumeh Khatamian ◽  
Ugur Unal ◽  
Umut Aydemir

Abstract Growing environmental problems along with the galloping rate of population growth have raised an unprecedented challenge to look for an ever-lasting alternative source of energy for fossil fuels. The eternal quest for sustainable energy production strategies has culminated in the electrocatalytic water splitting process integrated with renewable energy resources. The successful accomplishment of this process is thoroughly subject to highly efficient, earth-abundant, and cost-effective electrocatalysts to drive the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), preferably, in the same electrolyte. The present contribution has been dedicated to studying the synthesis, characterization, and electrochemical properties of newfangled electrocatalysts with the formal composition of Mg1-xTmxB2 (x = 0.025, 0.05, and 0.1; Tm (transition metal) = Fe and Co) primarily in HER as well as OER under 1 M KOH medium. The electrochemical tests revealed that among all the metal-doped MgB2 catalysts, Mg0.95Co0.05B2 has the best HER performance showing an overpotential of 470 mV at -10 mA cm-2 and a Tafel slope of 80 mV dec-1 on account of its high purity and fast electron transport. Further investigation shed some light on the fact that Fe concentration and overpotential for HER have adverse relation meaning that the highest amount of Fe doping (x = 0.1) displayed the lowest overpotential. This contribution introduces not only highly competent electrocatalysts composed of low-cost precursors for the water-splitting process but also a facile scalable method for the assembly of highly porous electrodes paving the way for further stunning developments in the field.


Sign in / Sign up

Export Citation Format

Share Document