scholarly journals Feasibility of Utilizing Photovoltaics for Irrigation Purposes in Moamba, Mozambique

2021 ◽  
Vol 13 (19) ◽  
pp. 10998
Author(s):  
Arsénio José Mindú ◽  
Jó António Capece ◽  
Rui Esteves Araújo ◽  
Armando C. Oliveira

Agriculture plays a significant role in the labor force and GDP of Mozambique. Nonetheless, the energy source massively used for water pumping in irrigation purposes is based on fossil fuels (diesel oil). Despite the water availability and fertile soils in Moamba, Mozambique, farmers struggle with the high cost of fuels used in the pumping systems. This study was sought to analyze the feasibility of utilizing a solar photovoltaic system as a means to reduce the environmental impact caused by the diesel pumps and simultaneously alleviate the expenses regarding the use of non-environmentally friendly technologies. Site observations and interviews were undertaken in order to obtain local data regarding the water demand, current energy systems costs and distances from the source to the irrigated fields. CLIMWAT 2.0 was used for climate data acquisition and analysis. The environmental benefits, the cost effectiveness and local climate conditions show that the PV system is feasible in Moamba. Furthermore, parameters such as hydraulic energy, incident solar energy, pump efficiency and total system efficiency were used to predict the performance of the system. The results obtained are important to analyze the implementation of such energy systems.

2019 ◽  
Vol 9 (1) ◽  
pp. 141 ◽  
Author(s):  
Slawomir Gulkowski ◽  
Agata Zdyb ◽  
Piotr Dragan

This study presents a comparative analysis of energy production over the year 2015 by the grid connected experimental photovoltaic (PV) system composed by different technology modules, which operates under temperate climate meteorological conditions of Eastern Poland. Two thin film technologies have been taken into account: cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS). Rated power of each system is approximately equal to 3.5 kWp. In addition, the performance of a polycrystalline silicon technology system has been analyzed in order to provide comprehensive comparison of the efficiency of thin film and crystalline technologies in the same environmental conditions. The total size of the pc-Si system is equal to 17 kWp. Adequate sensors have been installed at the location of the PV system to measure solar irradiance and temperature of the modules. In real external conditions all kinds of modules exhibit lower efficiency than the values provided by manufacturers. The study reveals that CIGS technology is characterized by the highest energy production and performance ratio. The observed temperature related losses are of the lowest degree in case of CIGS modules.


TECCIENCIA ◽  
2021 ◽  
Vol 16 (31) ◽  
pp. 15-28
Author(s):  
Asad A. Naqvi ◽  
Talha Bin Nadeem ◽  
Ahsan Ahmed ◽  
Asad Ali Zaidi

Off-grid Photovoltaic (PV) system along with battery storage is very effective solution for electrification in remote areas. However, battery capacity selection is the most challenging task in system designing. In this study, an off-grid PV system along with battery storage is designed for the remote area of Karachi, Pakistan. The system is designed by considering the maximum energy requirement in summer season. The battery storage is selected to fulfill the energy demand during the night and cloudy seasons. On the basis of load, a total of 6 kW system is required to fulfill the energy demand. For such system, 925 Ah of battery is required to meet the energy requirement for a day in absence of solar irradiation. A regression-based correlation between battery capacity and energy demand is prepared for suitable battery sizing using Minitab. An economic analysis of the project is also carried out from which a net present value and simple payback are determined as USD 10,348 and 3 years, respectively. The environmental benefits are also been determined. It is found that the system will reduce around 7.32 tons of CO2 per annum which corresponds to the 183.69 tons of CO2 not produced in the entire project life.


2021 ◽  
pp. 1-32
Author(s):  
Ruda Lee ◽  
Hyomun Lee ◽  
Dongsu Kim ◽  
Jongho Yoon

Abstract Battery systems are critical factors in the effective use of renewable energy systems because the self-production of electricity by renewables for self-consumption has become profitable for building applications. This study investigates the appropriate capacity of the Battery Energy Storage System (BESS) installed in all-electric zero energy power houses (AEZEPHs). The AEZEPH used for this study is a highly energy-efficient house. Its criteria indicate that all the electrical energy within the home is covered based on the generated electricity from on-site renewable energy systems, including that the annual net site energy use is almost equal to zero. The experiment for measured data of electricity consumed and generated in the buildings is conducted for a year (i.e., Jan. through Dec. 2014). Based on the measured data, patterns of the electricity consumed by the AEZEPH and generated by an on-site renewable energy system (i.e., photovoltaic (PV) system), and BESS's appropriate capacity is then analyzed and evaluated using the EES analysis tool, named Poly-sun. This study indicates that self-consumption can be increased up to 66% when the ESS system is installed and used during operating hours of the PV system. The amount of received electricity during the week tends to be reduced by about two times.


2021 ◽  
Vol 958 (1) ◽  
pp. 012025
Author(s):  
R Tawegoum

Abstract Predicting hourly potential evapotranspiration is particularly important in constrained horticultural nurseries. This paper presents a three-step-ahead predictor of potential evapotranspiration for horticultural nurseries under unsettled weather conditions or climate sensor failure. The Seasonal AutoRegressive Integrated Moving Average model based on climate data was used to derive a predictor using data generated according to prior knowledge of the system behavior; the aim of the predictor was to compensate for missing data that are usually not considered in standard forecasting approaches. The generated data also offer the opportunity to capture variations of the model parameters due to abrupt changes in local climate conditions. A recursive algorithm was used to estimate parameter variation, and the Kalman filter to model the state of the system. The simulations for steady-state weather and unsettled weather conditions showed that the predictor could forecast potential evapotranspiration more accurately than the standard approach did. These results are encouraging within the context of predictive irrigation scheduling in nurseries.


2020 ◽  
Vol 17 (1) ◽  
pp. 1
Author(s):  
Nurmalessa Muhammad ◽  
Nor Zaini Ikrom Zakaria ◽  
Sulaiman Shaari ◽  
Ahmad Maliki Omar

The failure detection in a grid-connected photovoltaic (PV) system has become an important aspect of solving the issue of the reduced energy output in the PV system. One of the methods in detecting failure is by using the threshold-based method to compute the ratio of actual and predicted DC array current and DC string voltage value. This value will be applied in the failure detection algorithm by using power loss analysis and may reduce the time, cost and labour needed to measure the quality of the energy output of the PV system. This study presented the threshold value of DC array current and DC string voltage to be implemented in the algorithm of fault detection in grid-connected photovoltaic (PV) system under the Malaysian climate. Data from the PV system located at Green Energy Research Center (GERC) was recorded in 12 months interval using the monocrystalline PV modules. The actual data was recorded using five minutes interval for 30 consecutive days. The prediction of the data was calculated using the mathematical method. The threshold value was determined from the ratio between actual and predicted data. The results show that the DC array current threshold value, σ is 0.9816. While, DC string voltage threshold value, λ is 0.9261. The proposed value may be beneficial for the determination of threshold value for regions with the tropical climate.


2020 ◽  
Vol 5 (1) ◽  
pp. 007-017
Author(s):  
Shahed M Farajat ◽  
M Abu-Zaid

Jordan like the other non-oil countries, spend significant amount of its budget on importing foreign energy. Also, the power demand increases due to, the population growth, in addition to hosting high number of refugees, from neighboring countries, and the enhancement of the citizen life style. The objective of this study, is to define the cooling load requirement, for the engineering building, at Mutah University, in order to analyze suitable cooling system, to cater the required cooling load. Energy analysis carried out, using the climate variables tabulated data, and Cooling Load Temperature Difference (CLTD), and Cooling Load Factor (CLF). The required power, to drive the cooling system was defined. Climate data shows that the average temperature was 33.2 °C, 32 °C and 33.3 °C in 2015, 2016 and 2017, respectively. The maximum temperatures was 38 °C registered in 2015. In this study the implementation of renewable energy, was considered by analyzing the viability of using, photovoltaic system, to provide power for the cooling system. Two options, to provide power for the system analyzed, the first option is supply the power from the grid, and the second option is, to supply the required power using photovoltaic power plant. The results show that, the cooling load of the building is 560 kW, and the required electrical power, to operate the cooling system is 224 kW electrical power. In addition, the results show that, the cost of power from PV system is, 40 % less than the cost of power from grid for the first 10 years. In addition, the payback period for the designed system is 5 years.


2020 ◽  
Vol 101 (3) ◽  
pp. E265-E273
Author(s):  
Fredric Lipschultz ◽  
David D. Herring ◽  
Andrea J. Ray ◽  
Jay R. Alder ◽  
LuAnn Dahlman ◽  
...  

Abstract The goal of the U.S. Climate Resilience Toolkit’s (CRT) Climate Explorer (CE) is to provide information at appropriate spatial and temporal scales to help practitioners gain insights into the risks posed by climate change. Ultimately, these insights can lead to groups of local stakeholders taking action to build their resilience to a changing climate. Using CE, decision-makers can visualize decade-by-decade changes in climate conditions in their county and the magnitude of changes projected for the end of this century under two plausible emissions pathways. They can also check how projected changes relate to user-defined thresholds that represent points at which valued assets may become stressed, damaged, or destroyed. By providing easy access to authoritative information in an elegant interface, the Climate Explorer can help communities recognize—and prepare to avoid or respond to—emerging climate hazards. Another important step in the evolution of CE builds on the purposeful alignment of the CRT with the U.S. Global Change Research Program’s (USGCRP) National Climate Assessment (NCA). By closely linking these two authoritative resources, we envision that users can easily transition from static maps and graphs within NCA reports to dynamic, interactive versions of the same data within CE and other resources within the CRT, which they can explore at higher spatial scales or customize for their own purposes. The provision of consistent climate data and information—a result of collaboration among USGCRP’s federal agencies—will assist decision-making by other governmental entities, nongovernmental organizations, businesses, and individuals.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ahmed S Kagilik ◽  
Abduraouf M Tawel

Many Libyan authorities proposed to investigate the possibility of utilizing a suitable terrain in Libya to add generation capacity of large-scale photovoltaic power plants. In this paper, the first grid-connected PV plant of 14 MWp which will be executed in Hoon city and supported by the Renewable Energy Authority of Libya (REAOL) is presented. To understand and improve the operational behavior of PV system, a comprehensive study including the plant design and detailed performance analysis under a local climate conditions is performed. Using polycrystalline silicon technology, the first year energy yield is estimated and the monthly system output for this plant is calculated. The performance ratio and various power losses (temperature, irradiance, power electronics, interconnection, etc.) are determined. The PV system supplied 24964 MWh to the grid during the first year giving an average annual overall yield factor 1783 kWh/kWp and average annual performance ratio of the system of 76.9%.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2153
Author(s):  
Amir Hossein Dehghanipour ◽  
Davood Moshir Panahi ◽  
Hossein Mousavi ◽  
Zahra Kalantari ◽  
Massoud Tajrishy

Lake Urmia in northwestern Iran is the largest lake in Iran and the second largest saltwater lake in the world. The water level in Lake Urmia has decreased dramatically in recent years, due to drought, climate change, and the overuse of water resources for irrigation. This shrinking of the lake may affect local climate conditions, assuming that the lake itself affects the local climate. In this study, we quantified the lake’s impact on the local climate by analyzing hourly time series of data on climate variables (temperature, vapor pressure, relative humidity, evaporation, and dewpoint temperature for all seasons, and local lake/land breezes in summer) for the period 1961–2016. For this, we compared high quality, long-term climate data obtained from Urmia and Saqez meteorological stations, located 30 km and 185 km from the lake center, respectively. We then investigated the effect of lake level decrease on the climate variables by dividing the data into periods 1961–1995 (normal lake level) and 1996–2016 (low lake level). The results showed that at Urmia station (close to the lake), climate parameters displayed fewer fluctuations and were evidently affected by Lake Urmia compared with those at Saqez station. The effects of the lake on the local climate increased with increasing temperature, with the most significant impact in summer and the least in winter. The results also indicated that, despite decreasing lake level, local climate conditions are still influenced by Lake Urmia, but to a lesser extent.


Sign in / Sign up

Export Citation Format

Share Document