scholarly journals A Research by Design Strategy for Climate Adaptation Solutions: Implementation in the Low-Density, High Flood Risk Context of the Lake District, UK

2021 ◽  
Vol 13 (21) ◽  
pp. 11847
Author(s):  
Ifigenia Psarra ◽  
Özlem Altınkaya Genel ◽  
Alex van Spyk

The purpose of this paper is to propose a research by design strategy, focusing on the generation of innovative climate adaptation solutions by utilizing the Design Thinking Process. The proposed strategy has been developed and tested in a research and design studio, which took place in 2020 at a Master of Architecture degree program in the Netherlands. The studios focused on the sparsely populated, high flood risk region of the Lake District, UK. The Lake District faces urgent climate change challenges that demand effective solutions. On the other hand, the area is a UNESCO heritage site, characterized by massive tourism and tending towards museumification (sic). Three indicative design research projects were selected to illustrate the proposed research by design strategy. The results reveal that this strategy facilitates the iterative research by design process and hence offers a systematic approach to convert the threats of climate change into opportunities by unraveling the potentials of the study area. The findings lay the groundwork for more systematic studies on research by design as an effective strategy for climate change adaptation design. Beyond the local case, the results contribute to the critical theories on climate adaptation design and research by design methodologies.

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1877 ◽  
Author(s):  
Qianqian Zhou ◽  
Karsten Arnbjerg-Nielsen

Identifying what, when, and how much adaptation is needed to account for increased pluvial flood risk is inherently uncertain. This presents a challenge to decision makers when trying to identify robust measures. This paper presents an integrated uncertainty analysis to quantify not only the overall uncertainty of individual adaptation scenarios, but also the net uncertainty between adaptation alternatives for a direct comparison of their efficiency. Further, a sensitivity analysis is used to assess the relative contribution of inherent uncertainties in the assessment. A Danish case study shows that the uncertainties in relation to assessing the present hazards and vulnerabilities (e.g., input runoff volume, threshold for damage, and costing of floods) are important to the overall uncertainty, thus contributing substantially to the overall uncertainty in relation to decisions on action or in-action. Once a decision of action has been taken, the uncertainty of the hazards under the current climate, and also the magnitude of future climate change, are less important than other uncertainties such as discount rate and the cost of implementing the adaptation measures. The proposed methodology is an important tool for achieving an explicit uncertainty description of climate adaptation strategies and provides a guide for further efforts (e.g., field data collection) to improve decision-making in relation to climate change.


Author(s):  
Rudolf Espada ◽  
Armando Apan ◽  
Kevin McDougall

Purpose The purpose of this paper was to develop an integrated framework for assessing the flood risk and climate adaptation capacity of an urban area and its critical infrastructures to help address flood risk management issues and identify climate adaptation strategies. Design/methodology/approach Using the January 2011 flood in the core suburbs of Brisbane City, Queensland, Australia, various spatial analytical tools (i.e. digital elevation modeling and urban morphological characterization with 3D analysis, spatial analysis with fuzzy logic, proximity analysis, line statistics, quadrat analysis, collect events analysis, spatial autocorrelation techniques with global Moran’s I and local Moran’s I, inverse distance weight method, and hot spot analysis) were implemented to transform and standardize hazard, vulnerability, and exposure indicating variables. The issue on the sufficiency of indicating variables was addressed using the topological cluster analysis of a two-dimension self-organizing neural network (SONN) structured with 100 neurons and trained by 200 epochs. Furthermore, the suitability of flood risk modeling was addressed by aggregating the indicating variables with weighted overlay and modified fuzzy gamma overlay operations using the Bayesian joint conditional probability weights. Variable weights were assigned to address the limitations of normative (equal weights) and deductive (expert judgment) approaches. Applying geographic information system (GIS) and appropriate equations, the flood risk and climate adaptation capacity indices of the study area were calculated and corresponding maps were generated. Findings The analyses showed that on the average, 36 (approximately 813 ha) and 14 per cent (approximately 316 ha) of the study area were exposed to very high flood risk and low adaptation capacity, respectively. In total, 93 per cent of the study area revealed negative adaptation capacity metrics (i.e. minimum of −23 to <0), which implies that the socio-economic resources in the area are not enough to increase climate resilience of the urban community (i.e. Brisbane City) and its critical infrastructures. Research limitations/implications While the framework in this study was obtained through a robust approach, the following are the research limitations and recommended for further examination: analyzing and incorporating the impacts of economic growth; population growth; technological advancement; climate and environmental disturbances; and climate change; and applying the framework in assessing the risks to natural environments such as in agricultural areas, forest protection and production areas, biodiversity conservation areas, natural heritage sites, watersheds or river basins, parks and recreation areas, coastal regions, etc. Practical implications This study provides a tool for high level analyses and identifies adaptation strategies to enable urban communities and critical infrastructure industries to better prepare and mitigate future flood events. The disaster risk reduction measures and climate adaptation strategies to increase urban community and critical infrastructure resilience were identified in this study. These include mitigation on areas of low flood risk or very high climate adaptation capacity; mitigation to preparedness on areas of moderate flood risk and high climate adaptation capacity; mitigation to response on areas of high flood risk and moderate climate adaptation capacity; and mitigation to recovery on areas of very high flood risk and low climate adaptation capacity. The implications of integrating disaster risk reduction and climate adaptation strategies were further examined. Originality/value The newly developed spatially explicit analytical technique, identified in this study as the Flood Risk-Adaptation Capacity Index-Adaptation Strategies (FRACIAS) Linkage/Integrated Model, allows the integration of flood risk and climate adaptation assessments which had been treated separately in the past. By applying the FRACIAS linkage/integrated model in the context of flood risk and climate adaptation capacity assessments, the authors established a framework for enhancing measures and adaptation strategies to increase urban community and critical infrastructure resilience to flood risk and climate-related events.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Monika Egerer ◽  
Dagmar Haase ◽  
Timon McPhearson ◽  
Niki Frantzeskaki ◽  
Erik Andersson ◽  
...  

AbstractUrban social–ecological–technological systems (SETS) are dynamic and respond to climate pressures. Change involves alterations to land and resource management, social organization, infrastructure, and design. Research often focuses on how climate change impacts urban SETS or on the characteristics of urban SETS that promote climate resilience. Yet passive approaches to urban climate change adaptation may disregard active SETS change by urban residents, planners, and policymakers that could be opportunities for adaptation. Here, we use evidence of urban social, ecological, and technological change to address how SETS change opens windows of opportunity to improve climate change adaptation.


Author(s):  
Leonardo Zea-Reyes ◽  
Veronica Olivotto ◽  
Sylvia I. Bergh

AbstractCities around the world are confronted with the need to put in place climate adaptation policies to protect citizens and properties from climate change impacts. This article applies components of the framework developed by Moser and Ekström (2010) onto empirical qualitative data to diagnose institutional barriers to climate change adaptation in the Municipality of Beirut, Lebanon. Our approach reveals the presence of two vicious cycles influencing each other. In the first cycle, the root cause barrier is major political interference generating competing priorities and poor individual interest in climate change. A second vicious cycle is derived from feedbacks caused by the first and leading to the absence of a dedicated department where sector specific climate risk information is gathered and shared with other departments, limited knowledge and scientific understanding, as well as a distorted framing or vision, where climate change is considered unrelated to other issues and is to be dealt with at higher levels of government. The article also highlights the need to analyze interlinkages between barriers in order to suggest how to overcome them. The most common way to overcome barriers according to interviewees is through national and international support followed by the creation of a data bank. These opportunities could be explored by national and international policy-makers to break the deadlock in Beirut.


2021 ◽  
Vol 13 (12) ◽  
pp. 6517
Author(s):  
Innocent Chirisa ◽  
Trynos Gumbo ◽  
Veronica N. Gundu-Jakarasi ◽  
Washington Zhakata ◽  
Thomas Karakadzai ◽  
...  

Reducing vulnerability to climate change and enhancing the long-term coping capacities of rural or urban settlements to negative climate change impacts have become urgent issues in developing countries. Developing countries do not have the means to cope with climate hazards and their economies are highly dependent on climate-sensitive sectors such as agriculture, water, and coastal zones. Like most countries in Southern Africa, Zimbabwe suffers from climate-induced disasters. Therefore, this study maps critical aspects required for setting up a strong financial foundation for sustainable climate adaptation in Zimbabwe. It discusses the frameworks required for sustainable climate adaptation finance and suggests the direction for success in leveraging global climate financing towards building a low-carbon and climate-resilient Zimbabwe. The study involved a document review and analysis and stakeholder consultation methodological approach. The findings revealed that Zimbabwe has been significantly dependent on global finance mechanisms to mitigate the effects of climate change as its domestic finance mechanisms have not been fully explored. Results revealed the importance of partnership models between the state, individuals, civil society organisations, and agencies. Local financing institutions such as the Infrastructure Development Bank of Zimbabwe (IDBZ) have been set up. This operates a Climate Finance Facility (GFF), providing a domestic financial resource base. A climate change bill is also under formulation through government efforts. However, numerous barriers limit the adoption of adaptation practices, services, and technologies at the scale required. The absence of finance increases the vulnerability of local settlements (rural or urban) to extreme weather events leading to loss of life and property and compromised adaptive capacity. Therefore, the study recommends an adaptation financing framework aligned to different sectoral policies that can leverage diverse opportunities such as blended climate financing. The framework must foster synergies for improved impact and implementation of climate change adaptation initiatives for the country.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patrick L. Barnard ◽  
Jenifer E. Dugan ◽  
Henry M. Page ◽  
Nathan J. Wood ◽  
Juliette A. Finzi Hart ◽  
...  

AbstractAs the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and threatens the present-day form, function, and viability of communities, infrastructure, and ecosystems. Determining the timing and nature of these tipping points is essential for effective climate adaptation planning. Here we present a multidisciplinary case study from Santa Barbara, California (USA), to identify potential climate change-related tipping points for various coastal systems. This study integrates numerical and statistical models of the climate, ocean water levels, beach and cliff evolution, and two soft sediment ecosystems, sandy beaches and tidal wetlands. We find that tipping points for beaches and wetlands could be reached with just 0.25 m or less of SLR (~ 2050), with > 50% subsequent habitat loss that would degrade overall biodiversity and ecosystem function. In contrast, the largest projected changes in socioeconomic exposure to flooding for five communities in this region are not anticipated until SLR exceeds 0.75 m for daily flooding and 1.5 m for storm-driven flooding (~ 2100 or later). These changes are less acute relative to community totals and do not qualify as tipping points given the adaptive capacity of communities. Nonetheless, the natural and human built systems are interconnected such that the loss of natural system function could negatively impact the quality of life of residents and disrupt the local economy, resulting in indirect socioeconomic impacts long before built infrastructure is directly impacted by flooding.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1187
Author(s):  
Wouter Julius Smolenaars ◽  
Spyridon Paparrizos ◽  
Saskia Werners ◽  
Fulco Ludwig

In recent decades, multiple flood events have had a devastating impact on soybean production in Argentina. Recent advances suggest that the frequency and intensity of destructive flood events on the Argentinian Pampas will increase under pressure from climate change. This paper provides bottom-up insight into the flood risk for soybean production systems under climate change and the suitability of adaptation strategies in two of the most flood-prone areas of the Pampas region. The flood risk perceptions of soybean producers were explored through interviews, translated into climatic indicators and then studied using a multi-model climate data analysis. Soybean producers perceived the present flood risk for rural accessibility to be of the highest concern, especially during the harvest and sowing seasons when heavy machinery needs to reach soybean lots. An analysis of climatic change projections found a rising trend in annual and harvest precipitation and a slight drying trend during the sowing season. This indicates that the flood risk for harvest accessibility may increase under climate change. Several adaptation strategies were identified that can systemically address flood risks, but these require collaborative action and cannot be undertaken by individual producers. The results suggest that if cooperative adaptation efforts are not made in the short term, the continued increase in flood risk may force soybean producers in the case study locations to shift away from soybean towards more robust land uses.


2021 ◽  
pp. 251484862110224
Author(s):  
Danielle Emma Johnson ◽  
Meg Parsons ◽  
Karen Fisher

Although Indigenous peoples’ perspectives and concerns have not always been accommodated in climate change adaptation research and practice, a burgeoning literature is helping to reframe and decolonise climate adaptation in line with Indigenous peoples’ lived experiences. In this review, we bring together climate adaptation, decolonising and intersectional scholarship to chart the progress that has been made in better analysing and responding to climate change in Indigenous contexts. We identify a wealth of literature helping to decolonise climate adaptation scholarship and praxis by attending to colonial and neo-colonial injustices implicated in Indigenous peoples’ climate vulnerability, taking seriously Indigenous peoples’ relational ontologies, and promoting adaptation that draws on Indigenous capacities and aspirations for self-determination and cultural continuity. Despite calls to interrogate heterogenous experiences of climate change within Indigenous communities, the decolonising climate and adaptation scholarship has made limited advances in this area. We examine the small body of research that takes an intersectional approach to climate adaptation and explores how the multiple subjectivities and identities that Indigenous peoples occupy produce unique vulnerabilities, capacities and encounters with adaptation policy. We suggest the field might be expanded by drawing on related studies from Indigenous development, natural resource management, conservation, feminism, health and food sovereignty. Greater engagement with intersectionality works to drive innovation in decolonising climate adaptation scholarship and practice. It can mitigate the risk of maladaptation, avoid entrenchment of inequitable power dynamics, and ensures that even the most marginal groups within Indigenous communities benefit from adaptation policies and programmes.


Sign in / Sign up

Export Citation Format

Share Document