scholarly journals Production of Eco-Sustainable Materials: Compatibilizing Action in Poly (Lactic Acid)/High-Density Biopolyethylene Bioblends

2021 ◽  
Vol 13 (21) ◽  
pp. 12157
Author(s):  
Eduardo da Silva Barbosa Ferreira ◽  
Carlos Bruno Barreto Luna ◽  
Danilo Diniz Siqueira ◽  
Edson Antonio dos Santos Filho ◽  
Edcleide Maria Araújo ◽  
...  

Motivated by environment preservation, the increased use of eco-friendly materials such as biodegradable polymers and biopolymers has raised the interest of researchers and the polymer industry. In this approach, this work aimed to produce bioblends using poly (lactic acid) (PLA) and high-density biopolyethylene (BioPE); due to the low compatibility between these polymers, this work evaluated the additional influence of the compatibilizing agents: poly (ethylene octene) and ethylene elastomer grafted with glycidyl methacrylate (POE-g-GMA and EE-g-GMA, respectively), polyethylene grafted with maleic anhydride (PE-g-MA), polyethylene grafted with acrylic acid (PE-g-AA) and the block copolymer styrene (ethylene-butylene)-styrene grafted with maleic anhydride (SEBS-g-MA) to the thermal, mechanical, thermomechanical, wettability and morphological properties of PLA/BioPE. Upon the compatibilizing agents’ addition, there was an increase in the degree of crystallinity observed by DSC (2.3–7.6% related to PLA), in the thermal stability as verified by TG (6–15 °C for TD10%, 6–11 °C TD50% and 112–121 °C for TD99.9% compared to PLA) and in the mechanical properties such as elongation at break (with more expressive values for the addition of POE-g-GMA and SEBS-g-MA, 9 and 10%, respectively), tensile strength (6–19% increase compared to PLA/BioPE bioblend) and a significant increase in impact strength, with evidence of plastic deformation as observed through SEM, promoted by the PLA/ BioPE phases improvement. Based on the gathered data, the added compatibilizers provided higher performing PLA/BioPE. The POE-g-GMA compatibilizer was considered to provide the best properties in relation to the PLA/BioPE bioblend, as well as the PLA matrix, mainly in relation to impact strength, with an increase of approximately 133 and 100% in relation to PLA and PLA/BioPE bioblend, respectively. Therefore, new ecological materials can be manufactured, aiming at benefits for the environment and society, contributing to sustainable development and stimulating the consumption of eco-products.

2014 ◽  
Vol 970 ◽  
pp. 312-316
Author(s):  
Sujaree Tachaphiboonsap ◽  
Kasama Jarukumjorn

Thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend and thermoplastic starch (TPS)/poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend were prepared by melt blending method. PLA grafted with maleic anhydride (PLA-g-MA) was used as a compatibilizer to improve the compatibility of the blends. As TPS was incorporated into PLA, elongation at break was increased while tensile strength, tensile modulus, and impact strength were decreased. Tensile properties and impact properties of TPS/PLA blend were improved with adding PLA-g-MA indicating the enhancement of interfacial adhesion between PLA and TPS. With increasing PBAT content, elongation at break and impact strength of TPS/PLA blends were improved. The addition of TPS decreased glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA. Tgand Tcof TPS/PLA blend were decreased by incorporating PLA-g-MA. However, the presence of PBAT reduced Tcof TPS/PLA blend. Thermal properties of TPS/PLA/PBAT blends did not change with increasing PBAT content. SEM micrographs revealed that the compatibilized TPS/PLA blends exhibited finer morphology when compared to the uncompatibilized TPS/PLA blend.


2011 ◽  
Vol 410 ◽  
pp. 51-54 ◽  
Author(s):  
Arpaporn Teamsinsungvon ◽  
Yupaporn Ruksakulpiwat ◽  
Kasama Jarukumjorn

Poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend and its composite were prepared by melt blending method. Maleic anhydride grafted PLA (PLA-g-MA) prepared in-house was used as a compatibilizer to enhance the interfacial adhesion between PLA and PBAT and also to improve the dispersion of calcium carbonate (CaCO3) in polymer matrices. Increasing PBAT content (10-30 wt%) resulted in the improvement of elongation at break and impact strength of PLA. Tensile strength, Young’s modulus, and impact strength of PLA/PBAT blend improved with the presence of PLA-g-MA due to enhanced interfacial adhesion between PLA and PBAT. As CaCO3 (5 wt%) was incorporated into the compatibilized blend, tensile strength, Young’s modulus, and impact strength insignificantly changed while elongation at break decreased.


2019 ◽  
Vol 253 ◽  
pp. 02005
Author(s):  
Daniel Gere ◽  
Tibor Czigany

Nowadays, PLA is increasingly used as a packaging material, therefore it may appear in the petrol-based polymer waste stream. However, with the today’s mechanical recycling technologies PLA and PET bottles cannot be easily or cheaply separated. Therefore, our goal was to investigate the mechanical, morphological and thermal properties of different PET and PLA compounds in a wide range of compositions. We made different compounds from poly(ethylene-terephthalate) (PET) and poly(lactic acid) (PLA) by extrusion, and injection molded specimens from the compounds. We investigated the mechanical properties and the phase morphology of the samples and the thermal stability of the regranulates. PET and PLA are thermodynamically immiscible, therefore we observed a typical island-sea type morphology in SEM micrographs. When PLA was added, the mechanical properties (tensile strength, modulus, elongation at break and impact strength) changed significantly. The Young’s modulus increased, while elongation at break and impact strength decreased with the increase of the weight fraction of PLA. The TGA results indicated that the incorporation of PLA decreased the thermal stability of the PET/PLA blends.


2014 ◽  
Vol 970 ◽  
pp. 74-78 ◽  
Author(s):  
Jiraporn Nomai ◽  
Kasama Jarukumjorn

Sawdust/poly (lactic acid) (PLA) composites toughened with poly (butylene adipate-co-terephthalate) (PBAT) were prepared using a melt blending process. Mechanical, thermal and morphological properties of the composites were investigated. With the addition of PBAT into the sawdust/PLA composite, elongation at break and impact strength increased whereas tensile strength and tensile modulus decreased. In addition, thermal stability of the PLA composite improved with the presence of PBAT. Maleic anhydride grafted poly (lactic acid) (PLA-g-MA) was used as a compatibilizer to improve the compatibility of sawdust/PLA/PBAT composites. The compatibilized composites showed higher mechanical properties and thermal decomposition temperatures than that of the uncompatibilized composite due to improved interfacial adhesion between constituents of the composites. The optimum content of PLA-g-MA for sawdust/PLA/PBAT composites was 5 wt%. SEM micrographs revealed some features of ductile fracture in the composites toughened with PBAT and confirmed that PLA-g-MA improved the compatibility of the composites.


2019 ◽  
Vol 39 (3) ◽  
pp. 248-253
Author(s):  
Gwo-Geng Lin ◽  
Yi-Hu Song ◽  
Chao-Tsai Huang ◽  
Marek Sipos ◽  
Zhaokang Tu

Abstract Blends of two biobased polymers, poly(lactic acid) and poly(trimethylene terephthalate) (PTT), were compatibilized with either maleic anhydride-grafted poly(ethylene-octene) (mPOE) or organically modified clay (Cloisite 30B). Dynamic rheological measurements revealed that the mPOE inclusion resulted in a four-fold increase in viscosity relative to the noncompatibilized blends. By loading 3 wt% Cloisite 30B, the storage moduli of the blends showed a distinct solid-like behavior and high complex viscosity in the low-frequency region, which can be interpreted by the reduced sizes of the PTT phase evidenced from the scanning electron microscopy (SEM) micrography. A temperature sweep of the viscosity of the blends starting from 180°C revealed that the existence of an unmelted PTT dispersed phase might impede the decline in viscosity with increasing temperature near the melting point of PTT. The introduced compatibilizers can restrict the temperature-dependent morphology evolution, and the use of the 3 wt% 30B clay can prohibit the morphology evolution during the temperature sweep.


2014 ◽  
Vol 1024 ◽  
pp. 136-139 ◽  
Author(s):  
Buong Woei Chieng ◽  
Ibrahim Nor Azowa ◽  
Wan Yunus Wan Md Zin ◽  
Mohd Zobir Hussein

Graphene nanoplatelets (xGnP) were investigated as a novel nanoreinforcement filler in poly (lactic acid)(PLA)/poly (ethylene glycol)(PEG) blends by melt blending method. The prepared nanocomposites exhibited a significant improvement in tensile properties at a low xGnP loading. The tensile properties demonstrated the addition of 0.3wt% of xGnP led to an increase of up to 32.7%, 69.5% and 21.9% in tensile strength, tensile modulus and elongation at break of the nanocomposites respectively, compared to PLA/PEG blend. The nanocomposites also shows enhanced thermal stability compared with PLA/PEG blend in thermogravimetry analysis (TGA). Scanning electron microscopy (SEM) image of PLA/PEG/0.3wt% xGnP displays good uniformity and more homogenous morphology.


RSC Advances ◽  
2017 ◽  
Vol 7 (73) ◽  
pp. 46183-46194 ◽  
Author(s):  
Jia Yang ◽  
Hongwei Pan ◽  
Xin Li ◽  
Shulin Sun ◽  
Huiliang Zhang ◽  
...  

PPCU was prepared by using PPC and polyols as the raw materials and diphenyl-methane-diisocyanate (MDI) as the extender chain. The impact strength and elongation at break of PLA were remarkably enhanced by blending with PPCU.


2014 ◽  
Vol 775-776 ◽  
pp. 24-28
Author(s):  
Taciana Regina de Gouveia Silva ◽  
Bartira Brandão da Cunha ◽  
Pankaj Agrawal ◽  
Edcleide Maria Araújo ◽  
Tomás Jefférson Alves de Mélo

In this work, the effect of the PCL content and E-GMA compatibilizer on the mechanical properties and morphology of poly (lactic acid) - PLA/ poly (ε-caprolactone)-PCL blends was investigated. The results of the mechanical properties showed that there was a reduction in the elastic modulus and tensile strength when PCL was added to PLA. The decrease in the modulus was more pronounced when the PCL content was increased from 10 to 20% (wt). The PLA/PCL/E-GMA blend showed the lower modulus and tensile strength. This blend also presented the higher elongation at break and impact strength. The morphology analysis by SEM showed that the PLA/PCL blends where characterized by lack of adhesion between the PLA and PCL phases. The presence of E-GMA in the PLA/PCL/E-GMA blend improved the adhesion between the PLA and PCL phases.Keywords: poly (latic acid); poly (ε-caprolactone); polymer blends; compatibilizer


2019 ◽  
Vol 972 ◽  
pp. 178-184
Author(s):  
Sirirat Wacharawichanant ◽  
Chawisa Wisuttrakarn ◽  
Kasana Chomphunoi ◽  
Manop Phankokkruad

This research prepared poly(lactic acid) (PLA) and PLA/acrylonitrile-butadiene rubber (NBR) blends before and after adding polyethylene-g-maleic anhydride with 3 wt% of maleic anhydride (PE-g-MA3) 3 phr. The effects of NBR and PE-g-MA3 on morphological, mechanical and thermal properties of PLA and PLA blends were discussed. The morphological analysis observed the two-phase morphology of PLA/NBR blends, and it was observed the cavities generated due to NBR phase detachment during sample fracture, and droplets of NBR phase at higher NBR content. The PE-g-MA3 addition could improve adhesion between PLA and NBR phases due to the decrease of cavities in PLA matrix and droplet size of NBR. The mechanical properties showed the impact strength and strain at break of PLA/NBR blends dramatically increased when the amount of NBR increasing. The addition of PE-g-MA3 significantly improved the impact strength of PLA/NBR blends. The thermal properties showed the NBR addition had effect slightly on the melting temperature of PLA/NBR blends. The filling of NBR and PE-g-MA3 greatly decreased the percent crystallinity of PLA more than two times. The thermal degradation of pure PLA and NBR proceeds by one step, while the thermal degradation process of PLA/NBR and PLA/PE-g-MA3 proceeds by two steps. Which the first step showed a large mass loss of PLA degradation and the second step showed a small mass loss of PE-g-MA and NBR degradation.


2019 ◽  
Vol 20 (3) ◽  
pp. 504 ◽  
Author(s):  
Maria-Beatrice Coltelli ◽  
Patrizia Cinelli ◽  
Vito Gigante ◽  
Laura Aliotta ◽  
Pierfrancesco Morganti ◽  
...  

Chitin-nanofibrils are obtained in water suspension at low concentration, as nanoparticles normally are, to avoid their aggregation. The addition of the fibrils in molten PLA during extrusion is thus difficult and disadvantageous. In the present paper, the use of poly(ethylene glycol) (PEG) is proposed to prepare a solid pre-composite by water evaporation. The pre-composite is then added to PLA in the extruder to obtain transparent nanocomposites. The amount of PEG and chitin nanofibrils was varied in the nanocomposites to compare the reinforcement due to nanofibrils and plasticization due to the presence of PEG, as well as for extrapolating, where possible, the properties of reinforcement due to chitin nanofibrils exclusively. Thermal and morphological properties of nanocomposites were also investigated. This study concluded that chitin nanofibrils, added as reinforcing filler up to 12% by weight, do not alter the properties of the PLA based material; hence, this additive can be used in bioplastic items mainly exploiting its intrinsic anti-microbial and skin regenerating properties.


Sign in / Sign up

Export Citation Format

Share Document