scholarly journals A Review of Numerical Simulation as a Precedence Method for Prediction and Evaluation of Building Ventilation Performance

2021 ◽  
Vol 13 (22) ◽  
pp. 12721
Author(s):  
Ardalan Aflaki ◽  
Masoud Esfandiari ◽  
Saleh Mohammadi

Natural ventilation has been used widely in buildings to deliver a healthy and comfortable indoor environment for occupants. It also reduces the consumption of energy in the built environment and dilutes the concentration of carbon dioxide. Various methods and techniques have been used to evaluate and predict indoor airspeed and patterns in buildings. However, few studies have been implemented to investigate the relevant methods and tools for the evaluation of ventilation performance in indoor and outdoor spaces. The current study aims to review available methods, identifying reliable ones to apply in future research. This study investigates scientific databases and compares the advantages and drawbacks of methods including analytical models, empirical models, zonal models, and CFD models. The findings indicated the computational fluid dynamics (CFD) model is the most relevant method because of cost-effectiveness, informative technique, and proficiency to predict air velocity patterns and ratios in buildings. Finally, widely used CFD codes and tools are compared considering previous studies. It is concluded the application of codes for research is subject to the complexity and characteristics of a studied model, the area and field of study, the desired turbulence model, and the user interface.

2014 ◽  
Vol 9 (2) ◽  
pp. 145-160 ◽  
Author(s):  
Mohd Farid Mohamed ◽  
Steve King ◽  
Masud Behnia ◽  
Deo Prasad

Natural ventilation performance can be influenced by various factors, including facade treatments such as balconies. Balconies have been commonly incorporated into residential buildings for various purposes, yet the provision of a balcony as a passive design strategy to improve natural ventilation is not one of its common purposes. The objective of this study is to investigate the effect of balcony design on the natural ventilation performance of cross-ventilated high-rise apartments. This study uses Computational Fluid Dynamics (CFD) models to predict ventilation performance. CFD models are selected because of their accuracy, flexibility and ability to provide comprehensive data for the investigation. This study suggests that balconies in high-rise apartments could improve the ventilation performance of high-rise apartments, but that balconies can also have a negative impact on ventilation performance if not appropriately designed. Finally, this study suggests that balconies could improve the level of thermal comfort and indoor air quality of apartments by providing greater indoor air speed and better ventilation performance, respectively.


Author(s):  
Sunita Kruger ◽  
Leon Pretorius

In this paper, the influence of various bench arrangements on the microclimate inside a two-span greenhouse is numerically investigated using three-dimensional Computational Fluid Dynamics (CFD) models. Longitudinal and peninsular arrangements are investigated for both leeward and windward opened roof ventilators. The velocity and temperature distributions at plant level (1m) were of particular interest. The research in this paper is an extension of two-dimensional work conducted previously [1]. Results indicate that bench layouts inside the greenhouse have a significant effect on the microclimate at plant level. It was found that vent opening direction (leeward or windward) influences the velocity and temperature distributions at plant level noticeably. Results also indicated that in general, the leeward facing greenhouses containing either type of bench arrangement exhibit a lower velocity distribution at plant level compared to windward facing greenhouses. The latter type of greenhouses has regions with relatively high velocities at plant level which could cause some concern. The scalar plots indicate that more stagnant areas of low velocity appear for the leeward facing greenhouses. The windward facing greenhouses also display more heterogeneity at plant level as far as temperature is concerned.


Author(s):  
M. F. Mohamed ◽  
M. Behnia ◽  
S. King ◽  
D. Prasad

Cross ventilation is a more effective ventilation strategy in comparison to single-sided ventilation. In the NSW Residential Flat Design Code1 (RFDC) the majority of apartments are required to adopt cross ventilation. However, in the case of studio and one-bedroom apartments, it is acknowledged that single-sided ventilation may prevail. Deep plan studio and one-bedroom apartments may achieve lower amenity of summer thermal comfort and indoor air quality where mechanical ventilation is not provided by air conditioning. Since compliance with the code may allow up to 40% of apartments in a development in Sydney to be single sided, it is important to understand the natural ventilation performance of such apartments. The objective of this paper is to investigate the natural ventilation potential in single-sided ventilated apartments to improve indoor air quality and thermal comfort. This investigation includes simulating various facade treatments involving multiple opening and balcony configurations. Balcony configurations are included in this study because, in Sydney, a balcony is a compulsory architectural element in any apartment building. The study uses computational fluid dynamics (CFD) software to simulate and predict the ventilation performance of each apartment configuration. This study suggests that properly configured balconies and openings can significantly improve indoor ventilation performance for enhanced indoor air quality and thermal comfort, by optimizing the available prevailing wind. However, it is important to note that inappropriately designed fac¸ade treatments also could diminish natural ventilation performance.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2464
Author(s):  
Nari Yoon ◽  
Mary Ann Piette ◽  
Jung Min Han ◽  
Wentao Wu ◽  
Ali Malkawi

This paper optimizes opening positions on building facades to maximize the natural ventilation’s potential for ventilation and cooling purposes. The paper demonstrates how to apply computational fluid dynamics (CFD) simulation results to architectural design processes, and how the CFD-driven decisions impact ventilation and cooling: (1) background: A CFD helps predict the natural ventilation’s potential, the integration of CFD results into design decision-making has not been actively practiced; (2) methods: Pressure data on building facades were obtained from CFD simulations and mapped into the 3D modeling environment, which were then used to identify optimal positions of two openings of a zone. The effect of the selected opening positions was validated with building energy simulations; (3) results: The cross-comparison study of different window positions based on different geographical locations quantified the impact on natural ventilation effectiveness; and (4) conclusions: The optimized window position was shown to be effective, and some optimal solutions contradicted the typical cross-ventilation strategy.


2011 ◽  
Vol 255-260 ◽  
pp. 1368-1372
Author(s):  
Tong Yu Zhang ◽  
Xiao Tian Zhu ◽  
Yu Hang Shang

The United Habitation in Marseilles is the master wok of Le Corbusier, the well-know architect. Over the fifty years of its existence, the researches concentrate on its light and shadows and color scheme of the facades, etc. However, the most important original intent of the designer is the optimization of the indoor thermal environment, especially the use of cross ventilation. As green building has drawn more and more attention nowadays, this article will focus on the indoor natural ventilation conditions of two standard cells of the Marseilles Unit, which are known as the ‘upper E’ apartment and the ‘lower E’ apartment, by using computational fluid dynamics (CFD) models. Compared with the data of Middle corridor type dwelling, verify the superiority of its architectural layout.


2020 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Ciro Caliendo ◽  
Gianluca Genovese ◽  
Isidoro Russo

We have developed an appropriate Computational Fluid Dynamics (CFD) model for assessing the exposure to risk of tunnel users during their evacuation process in the event of fire. The effects on escaping users, which can be caused by fire from different types of vehicles located in various longitudinal positions within a one-way tunnel with natural ventilation only and length less than 1 km are shown. Simulated fires, in terms of maximum Heat Release Rate (HRR) are: 8, 30, 50, and 100 MW for two cars, a bus, and two types of Heavy Goods Vehicles (HGVs), respectively. With reference to environmental conditions (i.e., temperatures, radiant heat fluxes, visibility distances, and CO and CO2 concentrations) along the evacuation path, the results prove that these are always within the limits acceptable for user safety. The exposure to toxic gases and heat also confirms that the tunnel users can safely evacuate. The evacuation time was found to be higher when fire was related to the bus, which is due to a major pre-movement time required for leaving the vehicle. The findings show that mechanical ventilation is not necessary in the case of the tunnel investigated. It is to be emphasized that our modeling might represent a reference in investigating the effects of natural ventilation in tunnels.


Author(s):  
M Sreekanth ◽  
R Sivakumar ◽  
M Sai Santosh Pavan Kumar ◽  
K Karunamurthy ◽  
MB Shyam Kumar ◽  
...  

This paper presents a detailed and objective review of regenerative flow turbomachines, namely pumps, blowers and compressors. Several aspects of turbomachines like design and operating parameters, working principle, flow behaviour, performance parameters and analytical and Computational Fluid Dynamics (CFD) related details have been reviewed and summarized. Experimental work has been put in perspective and the most useful results for optimized performance have been presented. Consolidated plots of specific speed-specific diameter have been plotted which can be helpful in the early stages of design. Industrial outlook involving details of suppliers from various parts of the world, their product description and applications too are included. Finally, future research work to be carried out to make these machines widespread is suggested. This review is targeted at designer engineers who would need quantitative data to work with.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2197
Author(s):  
Nayara Rodrigues Marques Sakiyama ◽  
Jurgen Frick ◽  
Timea Bejat ◽  
Harald Garrecht

Predicting building air change rates is a challenge for designers seeking to deal with natural ventilation, a more and more popular passive strategy. Among the methods available for this task, computational fluid dynamics (CFD) appears the most compelling, in ascending use. However, CFD simulations require a range of settings and skills that inhibit its wide application. With the primary goal of providing a pragmatic CFD application to promote wind-driven ventilation assessments at the design phase, this paper presents a study that investigates natural ventilation integrating 3D parametric modeling and CFD. From pre- to post-processing, the workflow addresses all simulation steps: geometry and weather definition, including incident wind directions, a model set up, control, results’ edition, and visualization. Both indoor air velocities and air change rates (ACH) were calculated within the procedure, which used a test house and air measurements as a reference. The study explores alternatives in the 3D design platform’s frame to display and compute ACH and parametrically generate surfaces where air velocities are computed. The paper also discusses the effectiveness of the reference building’s natural ventilation by analyzing the CFD outputs. The proposed approach assists the practical use of CFD by designers, providing detailed information about the numerical model, as well as enabling the means to generate the cases, visualize, and post-process the results.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 259
Author(s):  
Ádám László Katona ◽  
István Ervin Háber ◽  
István Kistelegdi

A huge portion of energy consumption in buildings comes from heating, ventilation, and air conditioning. Numerous previous works assessed the potential of natural ventilation compared to mechanical ventilation and proved their justification on the field. Nevertheless, it is a major difficulty to collect enough information from the literature to make decisions between different natural ventilation solutions with a given situation and boundary conditions. The current study tests the passive air conduction system (PACS) variations in the design phase of a medium-sized new winery’s cellar and production hall in Villány, Hungary. A computational fluid dynamics simulation based comparative analysis enabled to determine the differences in updraft (UD) and downdraught (DD) PACS, whereby the latter was found to be more efficient. While the DD PACS performed an air change range of 1.02 h−1 to 5.98 h−1, the UD PACS delivered −0.25 h−1 to 12.82 h−1 air change rate. The ventilation performance of the DD version possessed lower amplitudes, but the distribution was more balanced under different wind incident angles, thus this version was chosen for construction. It could be concluded that the DD PACS provides a more general applicability for natural ventilation in moderate climates and in small to medium scale industry hall domains with one in- and one outlet.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 189
Author(s):  
Zhanying Zheng ◽  
Sharon Shui Yee Leung ◽  
Raghvendra Gupta

Dry powder inhaler (DPI) is a device used to deliver a drug in dry powder form to the lungs. A wide range of DPI products is currently available, with the choice of DPI device largely depending on the dose, dosing frequency and powder properties of formulations. Computational fluid dynamics (CFD), together with various particle motion modelling tools, such as discrete particle methods (DPM) and discrete element methods (DEM), have been increasingly used to optimise DPI design by revealing the details of flow patterns, particle trajectories, de-agglomerations and depositions within the device and the delivery paths. This review article focuses on the development of the modelling methodologies of flow and particle behaviours in DPI devices and their applications to device design in several emerging fields. Various modelling methods, including the most recent multi-scale approaches, are covered and the latest simulation studies of different devices are summarised and critically assessed. The potential and effectiveness of the modelling tools in optimising designs of emerging DPI devices are specifically discussed, such as those with the features of high-dose, pediatric patient compatibility and independency of patients’ inhalation manoeuvres. Lastly, we summarise the challenges that remain to be addressed in DPI-related fluid and particle modelling and provide our thoughts on future research direction in this field.


Sign in / Sign up

Export Citation Format

Share Document