scholarly journals Assessment and Prediction of Climate Risks in Three Major Urban Agglomerations of Eastern China

2021 ◽  
Vol 13 (23) ◽  
pp. 13037
Author(s):  
Jieming Chou ◽  
Mingyang Sun ◽  
Wenjie Dong ◽  
Weixing Zhao ◽  
Jiangnan Li ◽  
...  

In the context of global climate change and urban expansion, extreme urban weather events occur frequently and cause significant social problems and economic losses. To study the climate risks associated with rapid urbanization in the global context of climate change, the vulnerability degree of urban agglomeration is constructed by the Grey Model (GM (1, 1)). Based on the sixth phase of the Coupled Model Intercomparison Project (CMIP6) data sets SSP1-2.6, SSP2-4.5, and SSP5-8.5, drought, heat wave, and flood hazards under different emission scenarios are calculated. The vulnerability degree of the urban agglomeration and the climate change hazard were input into the climate change risk assessment model to evaluate future climate change risk. The analysis results show regional differences, with the Beijing–Tianjin–Hebei urban agglomeration having good urban resilience, the Yangtze River Delta urban agglomeration having slightly higher overall risk, and the Pearl River Delta urban agglomeration having the highest relative risk overall. On the whole, the higher the emission intensity is, the greater the risk of climate change to each urban agglomeration under different emission scenarios.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alizée Chemison ◽  
Gilles Ramstein ◽  
Adrian M. Tompkins ◽  
Dimitri Defrance ◽  
Guigone Camus ◽  
...  

AbstractStudies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies. Here, we investigate the additional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in Africa using several malaria models driven by Institute Pierre Simon Laplace climate simulations. Results reveal that our melting scenario could moderate the simulated increase in malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in malaria transmission risk over West Africa and drive malaria emergence in southern Africa associated with a significant southward shift of the African rain-belt. We argue that the effect of such ice-sheet melting should be investigated further in future public health and agriculture climate change risk assessments.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 831
Author(s):  
Roberta Marques ◽  
Juliano Lessa Pinto Duarte ◽  
Adriane da Fonseca Duarte ◽  
Rodrigo Ferreira Krüger ◽  
Uemmerson Silva da Cunha ◽  
...  

Lycoriella species (Sciaridae) are responsible for significant economic losses in greenhouse production (e.g., mushrooms, strawberries, and nurseries). The current distributions of species in the genus are restricted to cold-climate countries. Three species of Lycoriella are of particular economic concern in view of their ability to invade areas in countries across the Northern Hemisphere. We used ecological niche models to determine the potential for range expansion under future climate change scenarios (RCP 4.5 and RCP 8.5) in the distribution of these three species of Lycoriella. Stable environmental suitability under climate change was a dominant theme in these species; however, potential range increases were noted in key countries (e.g., USA, Brazil, and China). Our results illustrate the potential for range expansion in these species in the Southern Hemisphere, including some of the highest greenhouse production areas in the world.


2021 ◽  
pp. 26-31
Author(s):  
Cyril Caminade

Abstract This expert opinion provides an overview of mathematical models that have been used to assess the impact of climate change on ticks and tick-borne diseases, ways forward in terms of improving models for the recent context and broad guidelines for conducting future climate change risk assessment.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1790 ◽  
Author(s):  
Muhammad Afzal ◽  
Ragab Ragab

Although the climate change projections are produced by global models, studying the impact of climatic change on water resources is commonly investigated at catchment scale where the measurements are taken, and water management decisions are made. For this study, the Frome catchment in the UK was investigated as an example of midland England. The DiCaSM model was applied using the UKCP09 future climate change scenarios. The climate projections indicate that the greatest decrease in groundwater recharge and streamflow was projected under high emission scenarios in the 2080s. Under the medium and high emission scenarios, model results revealed that the frequency and severity of drought events would be the highest. The drought indices, the Reconnaissance Drought Index, RDI, Soil Moisture Deficit, SMD and Wetness Index, WI, predicted an increase in the severity of future drought events under the high emission scenarios. Increasing broadleaf forest area would decrease streamflow and groundwater recharge. Urban expansion could increase surface runoff. Decreasing winter barley and grass and increasing oil seed rape, would increase SMD and slightly decrease river flow. Findings of this study are helpful in the planning and management of the water resources considering the impact of climate and land use changes on variability in the availability of surface and groundwater resources.


2020 ◽  
Author(s):  
Fabian Drenkhan ◽  
Randy Muñoz ◽  
Christian Huggel ◽  
Holger Frey ◽  
Fernando Valenzuela ◽  
...  

<p>In the Tropical Andes, glaciers play a fundamental role for sustaining human livelihoods and ecosystems in headwater areas and further downstream. However, current rates of glacier shrinkage driven by climate change as well as increasing water demand levels bear a threat to long-term water supply. While a growing number of research has covered impacts of climate change and glacier shrinkage on the terrestrial water cycle and potential disaster risks, the associated potential economic losses have barely been assessed.</p><p>Here we present an integrated surface-groundwater assessment model for multiple water sectors under current conditions (1981-2016) and future scenarios (2050) of glacier shrinkage and growing water demand. As a case, the lumped model has been applied to the Santa river basin (including the Cordillera Blanca, Andes of Peru) within three subcatchments and considers effects from evapotranspiration, environmental flows and backflows of water use. Therefore, coupled greenhouse gas concentration (RCP2.6 and RCP8.5) and socioeconomic scenarios are used, which provide a broad range of the magnitude of glacier and water volume changes and associated economic impacts. Finally, net water volume released on the long term due to deglaciation effects is quantified and by multiple metrics converted into potential economic costs and losses for the agriculture, household and hydropower sectors. Additionally, the potential damages from outburst floods from current and future lakes have been included. Results for the entire Santa river basin show that water availability would diminish by about 11-16% (57-78 10<sup>6</sup> m³) in the dry season (June-August) and by some 7-10% (103-155 10<sup>6</sup> m³) during the wet season (December-February) under selected glacier shrinkage scenarios until 2050. This is a consequence of diminishing glacier contribution to streamflow which until 2050 would reduce from about 45% to 33% for June-August and from 6% to 4% for December-February. A first rough estimate suggests associated economic losses for main water demand sectors (agriculture, hydropower, drinking water) on the order of about 300 10<sup>6</sup> USD/year by 2050. Additionally, with ongoing glacier shrinkage and the formation of new lakes, about 45,000 inhabitants and 30,000 buildings are expected to be exposed to the risk of outburst floods in the 21<sup>st</sup> century.</p><p>The pressure on water resources and interconnected socio-eonvironmental systems in the basin is already challenging and expected to further exacerbate within the next decades. Currently, water demand levels are considerably increasing driven by growing irrigated (export) agriculture, population and energy demand which is in a large part sustained by hydropower. A coupling of potential water scarcity driven by climate change with a lack of water governance and high human vulnerabilities, bears strong conflict potentials with negative feedbacks for socio-economic development in the Santa basin and beyond. In this context, our coupled hydro-glacial economic impact model provides important support for future decision-making and long-term water management planning. However, uncertainties are relatively high (uncertainty range to be estimated) due to a lack of (good) hydro-climatic and socio-economic information at appropriate spatiotemporal scales. The presented model framework is potentially transferable to other high mountain catchments in the Tropical Andean region and beyond.</p>


2020 ◽  
Author(s):  
Lulu Liu ◽  
Shaohong Wu ◽  
Jiangbo Gao

<p>Risk of climate-related impacts results from the interaction of climate-related hazards (including hazardous events and trends) with the vulnerability and exposure of human and natural systems. Despite the commitment of the Paris Agreement, the integrate research on climate change risk combining risk‐causing factors and risk‐bearing bodies, the regional differences in climate impacts are still missing. In this paper we provide a quantitative assessment of hazards and socioeconomic risks of extreme events, risks of risk‐bearing bodies in China under global warming of 1.5 and 2.0°C based on future climate scenarios, and quantitative evaluation theory for climate change risk. For severe heat waves, hazards might significantly intensify. Affected population under 2.0°C warming might increase by more than 60% compared to that of 1.5°C. Hazards of severe droughts and floods might strengthen under Representative Concentration Pathway 8.5 scenario. Economic losses might double between warming levels of 1.5 and 2.0°C, and the population affected by severe floods might continuously increase. Under the integrate effects of multiple disasters, the regions with high population and economic risks would be concentrated in eastern China. The scope would gradually expand to the west with socioeconomic development and intensification of extreme events. High ecological risks might be concentrated in the southern regions of the Yangtze River Basin, while the ecological risk in northern China would expand. High agriculture yield risks might be distributed mainly in south of the North China Plain, the Sichuan Basin, south of the Yangtze River, and west of Northwest China, and the risk levels might continuously increase.</p>


2020 ◽  
Author(s):  
Wei Yuan ◽  
Shuang-ye Wu ◽  
Shugui Hou

<p>This study aims to establish future vegetation changes in the east and central of northern China (ECNC), an ecologically sensitive region in the transition zonal from humid monsoonal to arid continental climate. The region has experienced significant greening in the past several decades. However, few studies exist on how vegetation will change with future climate change, and great uncertainties exist due to complex, and often spatially non-stationary, relationships between vegetation and climate. In this study, we first used historical NDVI and climate data to model this spatially variable relationship with Geographically Weighted Logit Regression. We found that temperature and precipitation could explain, on average, 43% of NDVI variance, and they could be used to model NDVI fairly well. We then establish future climate change using the output of 11 CMIP6 models for the medium (SSP245) and high (SSP585) emission scenarios for the mid-century (2041-2070) and late-century (2071-2100). The results show that for this region, both temperature and precipitation will increase under both scenarios. By late-century under SSP585, precipitation is projected to increase by 25.12% and temperature is projected to increase 5.87<sup>o</sup>C in ECNC. Finally, we used future climate conditions as input for the regression models to project future vegetation (indicated by NDVI). We found that NDVI will increase under climate change. By mid-century, the average NDVI in ECNC will increase by 0.024 and 0.021 under SSP245 and SSP585. By late-century, it will increase by 0.016 and 0.006 under SSP245 and SSP585 respectively. Although NDVI is projected to increase, the magnitude of increase is likely to diminish with higher emission scenarios, possibly due to the benefit of precipitation increase being gradually encroached by the detrimental effects of temperature increase. Moreover, despite the overall NDVI increase, the area likely to suffer vegetation degradation will also expands, particularly in the western part of ECNC. With higher emissions and later into the century, region with low NDVI is likely to shift and/or expand north-forward. Our results could provide important information on possible vegetation changes, which could help to develop effective management strategies to ensure ecological and economic sustainability in the future.</p>


2021 ◽  
Author(s):  
Yujie Wang ◽  
JIANQING ZHAI ◽  
Lianchun Song

Abstract In the context of global climate change and rapid urbanization, the risk of urban waterlogging is one of the main climate risks faced by the Beijing-Tianjin-Hebei (BTH) urban agglomeration. In this study, we obtain the urban waterlogging risk index of the BTH urban agglomeration and assess waterlogging risks in the built-up area of the BTH for two time periods (1961–1990 and 1991–2019). We analyze the economic and social data as well as the climate data from 149 meteorological observation stations in Beijing, Tianjin, and Hebei provinces and consider the hazard, exposure, and vulnerability factors. The results showed that for the two time periods considered, the areas with the lowest (Level-1) waterlogging risk have decreased by nearly 50%, and the second-lowest (Level-2) ones have increased by nearly 55%. Although the areas at Level-3 and above have decreased by 17%, the variations in each city were quite different. Among them, the areas at Level-3 have increased by 52% and 51% in Beijing and Handan, respectively. During the years 1991–2019, the areas at Level-3 risk and above were mainly found in Beijing, Tianjin, Shijiazhuang, Qinhuangdao, Handan, and Xingtai. Among them, Beijing had the highest waterlogging risk index. In particular, the areas with Level-3 risk and above have increased by 76% in the past 30 years. The areas with the highest risk level (Level-4) of waterlogging in Beijing were mostly found in the downtown areas (Haidian, Chaoyang, Dongcheng, and Xicheng districts). This study provides a scientific background for urban waterlogging risk management and implementation of the national strategy for the development of the BTH region.


2019 ◽  
Vol 13 (1) ◽  
pp. 56-64
Author(s):  
Latifa Saeed Al Blooshi ◽  
Sofyan Alyan ◽  
Ngaina Joshua Joshua ◽  
Taoufik Saleh Ksiksi

Introduction: Changes in climate have impacts on natural and human systems on all continents and across the oceans. Most countries, including the UAE, are expected to experience a huge impact of climate change, due to the undergoing rapid growth and huge urban developments. Materials & Methods: Representative Concentration Pathways, or RCPs, represent the latest generation of scenarios that are used as potential inputs into climate models to show imposed greenhouse-gas concentration pathways during the 21st century. Four emission scenarios have been used for climate research; namely RCP 2.6, RCP 4.5 and RCP 6 and RCP 8.5. RCP 4.5 and RCP 8.5 are used. The aims of this study are to assess different RCPs and their appropriateness to predict temperatures and rainfall and to study the effect of climate change on three different cities in the UAE. Results & Conclusion: The results show a strong correlation between the present Tmax vs Tmax 2020, Tmax 2040, Tmax 2060, Tmax 2080 and Tmax 2095 for both RCP4.5 and RCP8.5. This means that maximum temperatures are going to increase in the coming years based on the predictions according to the different scenarios using MarksimGCMR. Precipitation projections shows greater variation than temperature. In this paper the amount of increase in temperatures and precipitation change is shown for the end of the current century.


Sign in / Sign up

Export Citation Format

Share Document