The Influence of Groundwater Desalination by Modified Active Carbon/Bentonite on Its Application in Agriculture

2021 ◽  
Vol 13 (23) ◽  
pp. 13173
Author(s):  
Jing Wang ◽  
Mohamed E. A. El-Sayed ◽  
Islam A. Abdelhafeez

It cannot be denied the importance of groundwater (Gw) as a source for irrigation. It is considered the only source of water in some locations such as newly reclaimed lands. However, the groundwater quality could be affected by salinity or heavy metals because of human activities or natural reasons. Thence, groundwater desalination comes to above as a part of the solution. In this study, the modified active carbon by inorganic iron polymer (Fex(OH)y) (Fe-AC) and bentonite (Ben) were used in groundwater desalination. The treatment process of 2 liters of groundwater was carried out by using a fixed-bed column where the flow rate was 120 mL/hour for each 20 grams sorbent. The results showed that the EC value of groundwater (2.54 dS/m) was reduced to 1.12 dS/m for treated groundwater (TGw) by Fe-AC/Ben mixture. Furthermore, the effect of irrigation by Gw and TGw was tested on the Faba bean and soil properties. The vegetative characters were significantly affected by irrigation by saline Gw while plant characters were much better after irrigation with TGw as well as soil chemical properties. Accordingly, the desalination of groundwater by Fe-AC/Ben mixture considers an effective and economic method that can be applied to reduce groundwater salinity and its impact on soil and crop.

2014 ◽  
Vol 57 (8) ◽  
pp. 3572-3587 ◽  
Author(s):  
Kannan Radhakrishnan ◽  
Lakshmi Sethuraman ◽  
Radha Panjanathan ◽  
Aparna Natarajan ◽  
Vishali Solaiappan ◽  
...  

2018 ◽  
Vol 8 (11) ◽  
pp. 2221 ◽  
Author(s):  
Olga Długosz ◽  
Marcin Banach

Vermiculite has been used for the removal of Cu 2 + and Ag + from aqueous solutions in a fixed-bed column system. The effects of initial silver and copper ion concentrations, flow rate, and bed height of the adsorbent in a fixed-bed column system were investigated. Statistical analysis confirmed that breakthrough curves depended on all three factors. The highest inlet metal cation concentration (5000 mg/dm3), the lowest bed height (3 cm) and the lowest flow rate (2 and 3 cm3/min for Ag + and Cu 2 + , respectively) were optimal for the adsorption process. The maximum total percentage of metal ions removed was 60.4% and 68.7% for Ag+ and Cu2+, respectively. Adsorption data were fitted with four fixed-bed adsorption models, namely Clark, Bohart–Adams, Yoon–Nelson and Thomas models, to predict breakthrough curves and to determine the characteristic column parameters. The adsorbent was characterized by SEM, FTIR, EDS and BET techniques. The results showed that vermiculite could be applied as a cost-effective sorbent for the removal of Cu 2 + and Ag + from wastewater in a continuous process.


2019 ◽  
Vol 120 ◽  
pp. 03003
Author(s):  
Huang-Mu Lo ◽  
Kae-Long Lin ◽  
Min-Hsin Liu ◽  
Hsung-Ying Chiu ◽  
Fang-Cheng Lo

Heavy metals from the electroplating wastewater might cause environmental pollution if not well treated. Generally, carbon adsorption might be used for the final step for further trace metals removal. This study investigated the heavy metal Cu adsorption in the fixed bed column with 1, 10 and 100 mg/L influent concentration. Results showed that KAB decreased as influent Cu concentration increased from 1 to 100 mg/L while N0 increased as influent concentration increased from 1 to 100 mg/L as can be found in Adams-Bohart model. R2 was found between 0.8579 and 0.9182. In Thomas model. KTH and q0 showed the similar trend as KAB and N0 in the Adams-Bohart model. KTH decreased as influent Cu concentration increased from 1 to 100 mg/L. q0 increased as influent Cu concentration increased from 1 to 100 mg/L. R2 of regression model was found between 0.9065 and 0.9836. In Yoon-Nelson model. KYN increased as influent Cu concentration increased from 1 to 100 mg/L while τ decreased as influent Cu concentration increased from 1 to 100 mg/L. Results showed that the three models of Adams-Bohart model, Thmoas model and The Yoon-Nelson model were suitable for the description of Cu adsorption by activated carbon.


2009 ◽  
Vol 60 (2) ◽  
pp. 357-362 ◽  
Author(s):  
Araceli A. Seolatto ◽  
Maurício M. Câmara ◽  
Eneida S. Cossich ◽  
Célia R. G. Tavares ◽  
Edson A. Silva

The reusability of the alga Sargassum filipendula was studied in batch reactor and in fixed-bed column in order to investigate Zn(II)-laden biomass regeneration. Four types of desorbing solutions at two different concentrations were tested and the results obtained to the desorption efficiencies were higher than 90% for three of the agents. Ten consecutive sorption-regeneration cycles at a flow rate of 8 mL/min were carried in fixed bed column with the feed concentration of 50 mg/L and using two eluent solutions: H2SO4 (0.1 M) and MgSO4 (3.5% at pH 3), which showed the best ability to elution tests in batch system. The column was used for a period of 30 days. The adsorption capacity decreased the passing of cycles, but the total amount of zinc removed after 10 cycles was approximately 8 times greater than if the biomass had been used for only one time, for both agents tested. Therefore, the regeneration in the Sargassum filipendula column through the two desorbing agents tested showing high efficient use of biomass and facilitating the process of treatment of wastewater containing metals that has successive exchanges of biomass.


2011 ◽  
Vol 287-290 ◽  
pp. 1620-1625
Author(s):  
Yan Wu ◽  
Zai Fang Deng ◽  
Yang Tao ◽  
Xue Gang Luo

Fixed-bed column studies for the removal of Ag(Ⅰ) and Cr(Ⅲ) from individual aqueous solutions using puffed rice husk were investigated in this work. The experiments were conducted to study the effect of important column parameters such as bed height, feed flow rate and feed initial concentration of solution. It was found that increasing bed depth yielded longer service time while increase in influent concentration and flow rate resulted in faster breakthrough. Bed Depth Service Time (BDST) model was applied to analyze the experimental data and the model parameters were evaluated. Good agreement of the experimental breakthrough curves with the model predictions was observed.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 215-232 ◽  
Author(s):  
Jaime López-Cervantes ◽  
Dalia I Sánchez-Machado ◽  
Reyna G Sánchez-Duarte ◽  
Ma A Correa-Murrieta

A continuous adsorption study in a fixed-bed column was carried out using a chitosan–glutaraldehyde biosorbent for the removal of the textile dye Direct Blue 71 from an aqueous solution. The biosorbent was prepared from shrimp shells and characterized by scanning electron microscopy, X-ray diffraction, and nuclear magnetic resonance spectroscopy. The effects of chitosan–glutaraldehyde bed height (3–12 cm), inlet Direct Blue 71 concentration (15–50 mg l−1), and feed flow rate (1–3 ml min−1) on the column performance were analyzed. The highest bed capacity of 343.59 mg Direct Blue 71 per gram of chitosan–glutaraldehyde adsorbent was obtained using 1 ml min−1 flow rate, 50 mg l−1 inlet Direct Blue 71 concentration, and 3 cm bed height. The breakthrough curve was analyzed using the Adams–Bohart, Thomas, and bed depth service time mathematical models. The behaviors of the breakthrough curves were defined by the Thomas model at different conditions. The bed depth service time model showed good agreement with the experimental data, and the high values of correlation coefficients (R2 ≥ 0.9646) obtained indicate the validity of the bed depth service time model for the present column system.


2017 ◽  
Vol 18 (2) ◽  
pp. 94-104
Author(s):  
Rozaimi Abu Samah

The main objective of this work was to design and model fixed bed adsorption column for the adsorption of vanillin from aqueous solution. Three parameters were evaluated for identifying the performance of vanillin adsorption in fixed-bed mode, which were bed height, vanillin initial concentration, and feed flow rate. The maximum adsorption capacity was increased more than threefold to 314.96 mg vanillin/g resin when the bed height was increased from 5 cm to 15 cm. Bohart-Adams model and Belter equation were used for designing fixed-bed column and predicting the performance of the adsorption process. A high value of determination coefficient (R2) of 0.9672 was obtained for the modelling of vanillin adsorption onto resin H103.


2019 ◽  
Vol 19 (2) ◽  
pp. 486 ◽  
Author(s):  
Nguyen Thi Thuong ◽  
Nguyen Thi Tuyet Nhi ◽  
Vo Thi Cam Nhung ◽  
Hoang Ngoc Bich ◽  
Bui Thi Phuong Quynh ◽  
...  

A number of harmful effects on the ecosystem, the life of humankind, and living species caused by dye-contaminated wastewater have urged the development for an efficient and cost-efficient treatment method for colored effluents. The cellulose-based adsorbents have been considered as a facile and efficient approach to remove hazardous pollutants because of the abundance of inexpensive agricultural wastes in Viet Nam. This study aims to investigate the elimination of methylene blue (MB) and crystal violet (VL) from wastewater using a fixed-bed column of pre-treated durian peel. Examined variables in the process are bed depths (2–6 cm), flow rate (5–20 mL/min), and influent dye concentrations (200–600 mg/L). The highest adsorption amount of pre-treated DP was 235.80 mg/g and 527.64 mg/g, respectively, on a 600 mg/L of methylene blue and crystal violet achieved within a bed height of 4 cm and a flow rate of 10 mL/min. Accordingly, the breakthrough curves were constructed and modeled using the relevant theoretical models under the effects of different experimental conditions. Pre-treated durian peel was found to exhibit high adsorption capacity for cationic dye in an initial concentration of 200–600 mg/L with complete removal being obtained.


2013 ◽  
Vol 68 (10) ◽  
pp. 2158-2163 ◽  
Author(s):  
Shenglong Zhang ◽  
Randi Zhang ◽  
Wei Xiao ◽  
Runping Han

Natural peanut husk (NPH) modified with hexadecyl trimethyl ammonium bromide (CTAB) was used as adsorbent to remove 2,5-dimethoxy-4-chloroaniline (DMCH) from solution in a fixed-bed column. Fourier transform infrared spectroscopy analysis and X-ray fluorescence of NPH and modified peanut husk (MPH) showed that CTAB had been introduced onto the surface of NPH. The effects of flow rate and bed depth on breakthrough curves were studied. The Thomas model and the Yan model were selected to fit the column adsorption data and the results showed that the Yan model was better at predicting the breakthrough curves. The adsorption quantity was up to 6.46 mg/g according to the Yan model. The bed depth service time model was used to calculate the critical bed depth from experimental data and it was directly related to flow rate. As a low-cost adsorbent, MPH is promising for the removal of DMCH from solution.


2010 ◽  
Vol 658 ◽  
pp. 53-56
Author(s):  
Zai Fang Deng ◽  
Xue Gang Luo ◽  
Xiao Yan Lin

The performance of low-cost adsorbent such as rice husk fixed bed column in removing copper from aqueous solution were studied in this work. Different column design parameters like bed height, flow rate and initial concentration were calculated. It was found that at 10 mg/L concentration of Cu (Ⅱ) and at flow rate 5 mL/min with different bed depths such as 9, 12 and 15 cm, the breakthrough time increases from 150 to 260 min; the breakthrough time increases from 125 to 780 min with decreasing of flow rate from 15 to 5 mL/min and decreased from 260 to 50 min when initial concentration increased from 7 to 50 mg/L.


Sign in / Sign up

Export Citation Format

Share Document